欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    全等三角形辅助线系列之二---中点类辅助线作法大全(共12页).doc

    • 资源ID:14087970       资源大小:1.47MB        全文页数:12页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    全等三角形辅助线系列之二---中点类辅助线作法大全(共12页).doc

    精选优质文档-倾情为你奉上全等三角形辅助线系列之二与中点有关的辅助线作法大全一、中线类辅助线作法1、遇到三角形的中线,可以倍长中线,使延长线段与原中线长相等,构造全等三角形,通过全等将分散的条件集中起来,利用的思维模式是全等变换中的“旋转”2、遇到题中有中点,可以构造三角形的中位线,利用中位线的性质转移线段关系3、遇到三角形的中线或与中点有关的线段,如果有直角三角形,可以取直角三角形斜边的中点,试图构造直角三角形斜边的中线,利用斜边中线的性质转移线段关系典型例题精讲【例1】 如图,已知在中,是边上的中线,是上一点,延长交于,求证: 【解析】延长到,使,连结,又,【例2】 如图,在中,交于点,点是中点,交的延长线于点,交于点,若,求证:为的角平分线 【解析】延长到点,使,连结在和中,而又,为的角平分线【例3】 已知为的中线,的平分线分别交于、交于求证: 【解析】延长到,使,连结、易证,又,的平分线分别交于、交于,利用证明,在中,【例4】 如图所示,在中,是的中点,垂直于,如果,求证 【解析】延长至,使,连接、因为,则从而,而,故,因此,即,则,即因为,故,则为Rt斜边上的中线,故由此可得【例5】 在中,是斜边的中点,、分别在边、上,满足若,则线段的长度为_【解析】如图、延长至点,使得,联结、由,有又,【例6】 如图所示,在中,延长到,使,为的中点,连接、,求证【解析】解法一:如图所示,延长到,使容易证明,从而,而,故 注意到,故,而公用,故,因此解法二:如图所示,取的中点,连接因为是的中点,是的中点,故是的中位线,从而,由可得,故,从而,【例7】 已知:ABCD是凸四边形,且E、F分别是AD、BC的中点,EF交AC于M;EF交BD于N,AC和BD交于G点 求证:【解析】取AB中点H,连接EH、FH,EHBD,FHAC,【例8】 在中,以为底作等腰直角,是的中点,求证:且【解析】过作交于又,又故且【例9】 如图所示,在中,为的中点,分别延长、到点、,使过、分别作直线、的垂线,相交于点,设线段、的中点分别为、求证:(1);(2)【解析】(1)如图所示,根据题意可知且,且,所以而、分别是直角三角形、的斜边的中点,所以,又已知,从而(2)由(1)可知,则由可得而、均为等腰三角形,所以【例10】 已知,如图四边形中,、分别是和的中点,、的延长线分别交于、两点求证:【解析】连接,取中点,连接、 ,同理,【例11】 已知:在中,动点绕 的顶点逆时针旋转,且,连结过、的中点、作直线,直线与直线、分别相交于点、(1)如图1,当点旋转到的延长线上时,点恰好与点重合,取的中点,连结、,根据三角形中位线定理和平行线的性质,可得结论(不需证明)(2)当点旋转到图2或图3中的位置时,与有何数量关系?请分别写出猜想,并任选一种情况证明【解析】图2:,图3: 证明:在图2中,取的中点,连结、 是的中点,是的中点,同理,证明图3的过程与证明图2过程相似 【例12】 如图所示,是内的一点,过作于,于,为的中点,求证【解析】如图所示,取、的中点、,连接、,则有且,且因为和都是直角三角形,故,从而, 又因为,而,且,所以,从而,故【例13】 如右下图,在中,若,为边的中点求证:【解析】如右下图,则取边中点,连结、由中位线可得,且为斜边上的中线,又,即,【例14】 如图,中,是中点,与交于,与 交于求证:,【解析】连结,是中点且在与中,【例15】 在ABCD中,过点D作,且,连接EF、EC,N、P分别为EC、BC的中点,连接NP.(1)如图1,若点E在DP上,EF与DC交于点M,试探究线段NP与线段NM的数量关系及ABD与MNP满足的等量关系,请直接写出你的结论;(2)如图2,若点M在线段EF上,当点M在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M的位置,并证明(1)中的结论图1 A B C D P E F N M 图2A B C D P E F N M1324PNAEFCDB【解析】(1), (2)点M是线段EF的中点(或其它等价写法). 证明:如图,分别连接BE、CF. 四边形ABCD是平行四边形, ADBC,ABDC, . , ,. 即 又,由得BDECDF ,. N、P分别为EC、BC的中点,NPEB, 同理可得 MNFC, NPEB,MNFC, 【例16】 在RtABC中,点D在边AC上(不与A,C重合),连结BD,F为BD中点(1)若过点D作DEAB于E,连结CF、EF、CE,如图1 设,则k = ;(2)若将图1中的ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示求证:;(3)若,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值【解析】(1);(2)如图2,过点C作CE的垂线交BD于点G,设BD与AC的交点为Q. 由题意, . D、E、B三点共线, AEDB., , ,. F是BD中点, F是EG中点.在中, (3)情况1:如图,当时,取AB的中点M,连结MF和CM, ,且,,.M为AB中点,.M为AB中点,F为BD中点,当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时.情况2:如图,当时,取AB的中点M,连结MF和CM,类似于情况1,可知CF的最大值为综合情况1与情况2,可知当点D在靠近点C的三等分点时,线段CF的长度取得最大值为.课后复习【作业1】 如图,中,是中线求证: 【解析】延长到,使,连结在和中 ,在中,【作业2】 在中,点为的中点,点、分别为、上的点,且以线段、为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形? 【解析】延长到点,使,连结、在和中,在和中故以线段、为边能构成一个直角三角形【作业3】 是的中线,是的中点,的延长线交于求证: 【解析】取的中点,连接易得,为的中点,所以,从而可证得:【作业4】 如图,在五边形中,为的中点求证: 【解析】取中点,中点连结、,则根据直角三角形斜边中线的性质及中位线的性质有,同理可证,即,专心-专注-专业

    注意事项

    本文(全等三角形辅助线系列之二---中点类辅助线作法大全(共12页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开