氧化沟工艺控制要点(共12页).doc
精选优质文档-倾情为你奉上氧化沟工艺控制要点氧化沟基本原理:氧化沟又名氧化渠,因其构筑物呈封闭式环行沟渠而得名,它是活性污泥法的一种变型。因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。氧化沟的水力停留时间长,有机负荷低,其本质上属于延迟曝气系统。(活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。)生物脱氮除磷机理1、生物脱氮机理污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将转化为和。在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将(经反亚硝化)和(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。硝化短程硝化:硝化全程硝化(亚硝化+硝化): 反硝化反硝化脱氮: 反硝化厌氧氨氧化脱氮: 反硝化厌氧氨反硫化脱氮:废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分。主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮。硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮。其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从或的氧化反应中获取能量。其中硝化的最佳温度在纯培养中为25-35 ,在土壤中为30-40 ,最佳pH 值偏碱性。反硝化作用是反硝化菌(大多数是异养型兼性厌氧菌,DO<0.5 mg/L)在缺氧的条件下,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,将硝酸盐氮还原为或,同时降解有机物。2、生物除磷原理磷在自然界以2 种状态存在:可溶态或颗粒态。所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。废水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生利用废水中简单的溶解性有机基质所需的能量,称该过程为磷的释放。进入好氧环境后,活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。将这些摄取大量磷的微生物从废水中去除,即可达到除磷的目的。厌氧释放磷的过程聚磷菌在厌氧条件下,分解体内的多聚磷酸盐产生ATP,利用ATP以主动运输方式吸收产酸菌提供的三类基质进入细胞内合成PHB。与此同时释放出于环境中。好氧吸磷过程聚磷菌在好氧条件下,分解机体内的PHB和外源基质,产生质子驱动力将体外的输送到体内合成ATP和核酸,将过剩的 聚合成细胞贮存物:多聚磷酸盐(异染颗粒)。氧化沟主要设计参数:水力停留时间:10-40天 污泥龄:一般10-30天有机负荷:0.05-0.15kgBOD5/(kgMLSS.d)活性污泥浓度:2000-6000mg/l工艺控制:氧化沟工艺(现在一般为改良型)是集有机物降解、脱氮、除磷3种功能于一体的生物处理技术。因此该工艺的运行控制应同时满足各项功能的要求,针对这些特性,在氧化沟工艺长期运行控制经验基础上,得出以下几个控制方法:1.对曝气系统(DO)溶解氧的控制在氧化沟脱氮除磷工艺中,由于生物除磷本身并不需要消耗氧气,故实际供氧量只需考虑以下2个部分:脱氮需氧量、硝化需氧量。在实际运行控制中,各段曝气量一般是根据在线DO仪和便携式DO仪的监控值。通过调整曝气机开启台数和频率实现控制。经长期的运行实践可得出各区DO的控制范围:一般保持缺氧区DO为0.30.7mg/l,好氧区DO控制在2.03.2mg/l;若太低会抑制硝化作用,太高则会使DO随回流污泥进入厌氧区,影响聚磷菌的释磷,而且会使聚磷菌在好氧区消耗过多的有机物,从而影响对磷的吸收。从实际的运行效果来看,氧化沟的除磷效果始终能保持较高的水平,得益于对氧化沟各区内DO的有效控制,尤其是好氧区。当混合液进入二沉池完成泥水分离后,充足的DO保证了聚磷菌能将磷牢牢的聚积于体内而不释放于水中,最终确保了良好的除磷效果。2.对MLSS(混合液悬浮固体)的控制影响氧化沟中MLSS值的因素很多。MLSS取决于曝气系统的供氧能力和二沉池的泥水分离能力。从降解有机物的角度来看,MLSS值应尽量高一些,但MLSS值太高时,要求混合液的DO值也就越高。在同样的供氧能力时,维持较高的DO需要较大的空气量,一般的曝气系统难以达到要求,而且要求二沉池有较强的泥水分离能力,一般二沉池的表面积相对较小,难以提供充足的泥水分离能力。因此,应根据实际情况,确定一个最大的MLSS值,以其作为运行控制的基础。氧化沟由于是延时曝气系统,一般的MLSS维持在30005000mg/l。然而由于进水水质的关系,就我国的实际管网进水浓度而言,氧化沟工艺的污水处理厂MLSS常常只能达到3000mg/l左右,进水有机物溶度高可达到3000mg/l以上,进水有机物溶度低就在3000mg/l以下。3.对泥龄和排泥的控制对于生物脱氮除磷工艺而言,泥龄是个重要的设计和运行参数,生物的脱氮过程一般需要较长的泥龄,以满足世代时间较长的硝化菌生长繁殖的需要;而生物除磷是通过排除富磷的剩余污泥来实现,一般将泥龄控制在3.57d,故为了保证系统的除磷效果,就不得不维持较高的污泥排放量,系统的泥龄也不得不相应的降低。显然,硝化菌和聚磷菌在泥龄上存在着矛盾,在污水处理工艺设计和运行中,一般将泥龄控制在一个较窄的范围内,以兼顾脱氮和除磷的需要。基于此,为取得良好的脱氮除磷效果,一般氧化沟体统的泥龄采用(1620d)以保持较高的MLSS。在排泥控制过程中,除了用泥龄核算排泥量外,还需保持系统中稳定的MLSS和MLVSS(混合液挥发性悬浮固体),一般通过排泥是MLSS维持在30005000mg/l,。在实际运行中,按上述范围进行操作,均能获得稳定、优良的出水水质。4.BOD5/TN和BOD5/TP污水的BOD5/TN是影响脱氮的一个重要因素,由于活性污泥中硝化菌所占的比例较小,且产率比异氧菌低得多,在加上两者竞争底物和溶解氧,会抑制对方的生长繁殖,因此硝化菌比例与污水的BOD5/TN值相关。从理论上讲,在污水中的BOD5/TN>2.86时,有机物可满足反硝化的碳源需要,但由于实际上不是所有的BOD5都能被反硝化菌利用,所以之际运行中控制比值应该更大。污水生物脱氮除磷工艺中厌氧区有机基质的含量、种类及其与微生物营养物之间的比例关系(主要指BOD5/TP)是影响聚磷菌摄磷效果的一个不可忽视的控制因素。其值越大则对释磷效果越好,对后续除磷越有利,尤其是进水中易降解的有机物含量越高越好。运行表明:若要出水中磷的质量浓度控制在1.0mg/l以下,进水BOD5/TP控制在2030。异常情况处理措施1、暴雨和洪涝如果天气异常,发现暴雨即将来临,中控室值班人员应高度重视,随时观察洪水水位,紧急情况下要组织泄洪。降雨时,当进水泵房液位高于警戒水位时,值班人员必须随时将水位报告公司领导,同时汇报相关政府领导并组织开启进水超越闸门,保证进水超越排水通畅。工艺控制:a) 提升泵房满负荷生产,但不超过设计负荷的变化系数。b) 粗、细格栅现场连续开启,并及时清除栅渣。c) 暴雨初期污水处理系统曝气设备全开,注意监控生化系统运行参数(DO、MLSS等),及时调整工艺。d) 加大氧化沟上清液、二沉池出水及总出水的抽检频次。e) 二沉池全部投入使用。f) 随着暴雨的持续,生化系统DO上升,系统氨氮较低,可考虑减少曝气设备的开启台数及开启频率。连续暴雨时,值班人员需加强厂区进水口及泄洪闸等处的巡查,发现异常情况及时报告。当进水泵房液位降到安全液位时,应及时关闭进水超越阀门,正常处理污水。2、进水水质异常进水水质大幅度、长时间超过设计规定的进水水质较少,一般进水水质超标情况是非突发或非短时间的。发生进水水质异常时首先要向相关部门汇报,并取样备检、拍摄照片或录像保存异常证据,接下来才是采取措施当突发进水水质超标时,首先应减少进水量,并调整污水处理工艺,充分发挥污水厂所具有的能力,挖掘设施、工艺、设备的潜力,调整生化系统、二沉池、滤池的运行工况,增加化学除磷药剂及混凝药剂投加量,增大污泥脱水的投药比,延长设备的运行时间,必要时投运备用设备,采取一切可能的措施,尽可能在不增加设施和设备的情况下消除由于进水水质超标而引起的对出水水质下降构成的威胁,满足污水排放标准要求。并配合环保监察部门,查找超标污水源,加大污水排入城市下水道水质标准的监管执行力度,从源头截流进入污水厂的超标污水。3、水量不足当水量不足时,工艺控制如下:a) 提升泵房尽量保持水泵平稳进水,但需避免水泵低液位运行。b) 一般粗格栅每2小时开启一次,细格栅每1小时开启一次。c) 水量在设计水量的50%以下,污水处理系统单组运行(双组系统)或间歇运行(单组系统),注意监控生化系统运行参数(DO、MLSS等),及时调整工艺。d) 回流比控制在50-100%。e) 二沉池投入一半。4、水量超过设计负荷当水量超过设计负荷时,工艺控制如下:a) 提升泵房满负荷生产,但不超过设计负荷的变化系数。b) 粗、细格栅现场连续开启,并及时清除栅渣。c) 水量突增初期,污水处理系统曝气设备全开,注意监控生化系统运行参数(DO、MLSS等),及时调整工艺。d) 加大氧化沟上清液、二沉池出水及总出水的抽检频次。e) 二沉池全部投入使用。f) 随着生化系统逐渐稳定,DO上升,系统氨氮较低,可考虑减少曝气设备的开启台数及开启频率。5、污泥膨胀污泥膨胀最突出的表现是污泥沉降性能指标SVI大于150%。污水中如碳水化合物较多,溶解氧不足,缺乏氮、磷等养料,水温高或pH值较低情况下,均易引起污泥膨胀。此外,超负荷、污泥龄过长或有机物浓度梯度小等,也会引起污泥膨胀。排泥不畅则引起结合水性污泥膨胀。针对引起膨胀的原因工艺调整如下:a) 缺氧、水温高等加大曝气量,或降低水温,减轻负荷,或适当降低MLSS值,使需氧量减少等;b) 污泥负荷率过高,可适当提高MLSS值,以调整负荷,必要时还要停止进水“闷曝”一段时间;c) 缺氮、磷等养料,可投加硝化污泥或氮、磷等成分;d) pH值过低,可投加石灰等调节pH;e) 污泥大量流失,可投加5-10mg/L氯化铁,促进凝聚,刺激菌胶团生长,也可投加漂白粉或液氯(按干污泥的0.3%-0.6%投加),抑制丝状繁殖,特别能控制结合水污泥膨胀。此外,投加石棉粉末、硅藻土、粘土等物质也有一定效果。6、污泥解体现象:处理水质浑浊、污泥絮凝体微细化,处理效果变坏等。当出现污泥解体现象时,工艺调整如下:a) 对进水水质进行化验分析,确定是污水中混入有毒物质时,应考虑这是新的工业废水混入的结果,应减少进水水量加大曝气量,尽快使生化系统恢复活性。b) 调整进水量。c) 调整回流污泥量控制MLSS。d) 调整曝气量,控制溶解氧在2.0mg/L左右。e) 调整排泥量。7、污泥脱氮污泥在二沉池呈块状上浮的现象,并不是由于腐败所造成的,而是由于在曝气池内污泥龄过长,硝化过程进行充分,在沉淀池内产生反硝化,硝酸盐的氧被利用,氮即呈气体脱出附于污泥上,从而比重降低,整块上浮。所谓反硝化是指硝酸盐被反硝化菌还原成氨或氮的作用。反硝化作用一般溶解氧低于0.5mg/L时发生。因此,往往会忽视污泥的反硝化作用。这是在活性污泥法的运行中应当注意的现象,为防止这一异常现象的发生,应采取增加污泥回流量或及时排除剩余污泥,或降低混合液污泥浓度,缩短污泥龄和降低溶解氧浓度等措施,使之不进行到硝化阶段。8、二沉池的异常情况处理a)出水带有大量悬浮颗粒原因:水力负荷冲击或长期超负荷,因短流而减少了停留时间,以至絮体在沉降前即流出出水堰。解决办法:均匀分配水力负荷;调整进水、出水设施不均匀,减轻冲击负荷影响,有利于克服短流;投加絮凝剂,改善某些难沉淀悬浮物的沉降性能,如胶体或乳化油颗粒的絮凝;调整进入初沉池的剩余污泥的负荷。b)出水堰脏且出水不均 原因:污泥粘附、藻类长在堰上,或浮渣等物体卡在堰口上,导致出水堰脏,甚至某些堰口堵塞导致出水不均。解决办法:经常清除出水堰口卡住的污物;适当加药消毒阻止污泥、藻类在堰口的生长积累。c)污泥上浮原因:污泥停留时间过长,有机质腐败。解决办法:一是保持及时排泥,不使污泥在二沉池内停留时间太长;检查排泥设备故障;清除沉淀池内壁,部件或某些死角的污泥。二是在曝气池末端增加供氧,使进入二沉池的混合液内有足够的溶解氧,保持污泥不处理于反硝化状态。对于反硝化造成的污泥上浮,还可以增大剩余污泥的排放,降低SRT(泥龄),控制硝化,以达到控制反硝化的目的。d)浮渣溢流原因:浮渣去除装置位置不当或去除频次过低,浮渣停留时间长。解决办法:维修浮渣刮除装置;调整浮渣刮除频率;严格控制浮渣的产生量。9、出水异常处理a)氨氮超标检测好氧区的溶氧,保证好氧区溶氧充足。一般情况下,氧化沟出水溶氧控制在1-2mg/L,缺氧区溶氧控制在0.2-0.5mg/L,厌氧区溶氧小于0.2mg/L。出水氨氮偏高可适当加大曝气量,出水氨氮偏低可适当降低曝气量。分别监测厌氧区,缺氧区,好氧区的氨氮和总氮,适当调整回流量和内回流量,也可调整水力停留时间,确保硝化反应反硝化反应的充分进行。b)总磷超标适当投加除磷药剂,如PAC(聚合氯化铝)、PFC(聚合三氯化铁)。除磷的同时也可降低出水悬浮物,CODcr,且见效快。并加大排泥。c)COD、BOD5超标控制氧化沟MLSS、DO的浓度在正常范围;适当投加一些PAC、PFC等化学药剂;适当减少进水量,控制水力停留时间;如果有必要,需重新培泥。专心-专注-专业