植物叶绿体基因工程发展探析(一)(共3页).docx
精选优质文档-倾情为你奉上植物叶绿体基因工程发展探析(一)摘要从叶绿体的概念、转化优点、转化主要过程及方法等方面概述了叶绿体基因工程的发展情况,介绍了叶绿体基因工程的应用,包括提高植物光合效率、合成有机物质、生产疫苗、增强植物抗性及在系统发育学中的应用等,并提出叶绿体基因工程存在的问题,对其未来发展进行了展望。关键词植物叶绿体;基因工程;发展;应用;存在问题;展望叶绿体作为植物中与光合作用直接相连的重要细胞器,其基因组的功能也因此扮演着十分重要的角色。1882年Straburger观察到藻类叶绿体能分裂并进入子代细胞;1909年Baur和Correns通过在3种枝条颜色不同的紫茉莉间杂交得出,质体是母本遗传的。人们便开始对叶绿体遗传方面产生了浓厚的兴趣1。1988年Boynton等首次用野生型叶绿体DNA转化了单细胞生物衣藻突变体(atPB基因突变体),使其完全恢复光合作用能力,标志着叶绿体基因工程的诞生2。叶绿体基因工程作为一种很具有发展前景的植物转基因技术,在植物新陈代谢、抗虫性、抗病性、抗旱性、遗传育种等方面都将有着越来越重要的意义。1叶绿体基因工程概述1.1叶绿体简介叶绿体是植物进行光合作用的重要器官,是一种半自主型的细胞器,能够进行自我复制,含有双链环状DNA。叶绿体DNA分子一般长120160kb。叶绿体DNA有IRA和IRB2个反向重复序列(分别位于A链和B链),两者基因大小完全相同,只是方向相反,它们之间有1个大的单拷贝区(大小约80kb)和1个小的单拷贝区(大小约20kb)。1.2叶绿体基因组转化优点叶绿体基因具有分子量小、结构简单、便于遗传的特点,故相对于传统的细胞核遗传更能高效表达目的基因,这是因为叶绿体基因本身拥有巨大的拷贝数3。叶绿体基因可实现外源基因的定点整合,避免位置效应和基因沉默;遗传表达具有原核性;安全性好,叶绿体属于母系遗传,后代材料稳定;目的基因产物对植物的影响小。利用叶绿体基因转化的这些优点,可以加快育种速度和效率,节约育种时间。1.3叶绿体转化的主要过程叶绿体转化过程通常分4步:一是转化载体携带外源目的基因通过基因枪法或其他转化体系导入叶绿体;二是将外源表达框架整合到叶绿体的基因组里;三是筛选具有转化的叶绿体细胞;四是继代繁殖得到稳定的叶绿体转化植物4。1.4叶绿体转化的主要方法依据叶绿体转化的主要过程,生物学家相应地研究若干种叶绿体基因转化的方法,其中常用的叶绿体转化方法:一是微弹轰击法。将钨粉包裹构建完整的质粒载体,用基因枪轰击植物的各种组织、器官,然后对重组叶绿体进行连续筛选,不断提高同质化水平,最后获得所需的转基因植株5。二是农杆菌T-DNA介导的遗传转化法。将外源目的基因、选择标记基因等构建到农杆菌的Ti质粒上,然后通过与植物组织或器官共培养,最后把所需外源基因转化到叶绿体并获得表达。三是PEG处理法。只需将构建好的质粒(含外源基因、标记基因、同源片断、启动子、终止子等)在一定的PEG浓度下与植物原生质体共培养。2叶绿体基因工程的应用2.1提高植物光合效率植物的光合效率非常有限,太阳能的很小一部分可以转化为植物所需要的能量,从而转变为人类需要的产品。植物光合效率取决于Rubisco酶的丰富度。Rubisco酶一方面可以制造可溶性蛋白,另一方面也可以限制CO2合成。人们可以通过2种直接的方法提高光合速率:一是加速酶催化的循环过程;二是提高酶的特性,减少光呼吸浪费的能量6。很多科学家正试图通过提高Rubisco酶来提高植物的光合效率,而其中拟南芥和水稻的定点整合试验取得了重大突破,证明叶绿体基因工程是生产高光合效率作物植物的最有价值的方法。2.2合成有机物质由于叶绿体型转基因植物具有环境安全性好、底物丰富、产物区域化等优点,已被越来越多的人关注,并成为工业化生产特定有机物质的可靠场所。例如,有科学家已发明了用叶绿体基因工程表达聚3-羟基丁酸酯合成相关基因的方法。聚3-羟基丁酸酯及其他类型的聚3-羟基链烷酸酯同属于聚酯类物质,是自然界中多种细菌的碳源及能源储备物。具有生物可降解性,如取代化学合成塑料将能从源头解决塑料废弃物引起的“白色污染”。其通过构建了含phbB、phM、phbC和aadA基因表达盒的叶绿体整合及表达载体,通过基因枪轰击法转化烟草。Northem点杂交、RT-PCR分析结果表明,叶绿体型转基因植株中目的基因在转录水平的表达明显高于核转化植株中相应基因。2.3生产疫苗人类治疗用蛋白质可以在叶绿体中实现表达,表达效率取决于外源基因的整合位点,增强转录和翻译的调控元件以及外源蛋白的稳定性等。人类已经在用叶绿体基因生产疫苗方面开展了卓有成效的工作。例如,范国昌等将甲型肝炎病毒VP3P1区和丙型肝炎病毒C区融合,并导入到衣藻叶绿体基因组中,融合蛋白得到高效表达,且具有双抗原活性。而霍乱病毒蛋白B(CTB)抗原CTB已经在叶绿体中转化成功,预示着转基因植物疫苗的可商业化前景。Tregoning等将TetC基因在烟草叶绿体基因组进行表达,为了增加mRNA的稳定性及在烟草叶片内表达的可行性,他们将基因进行了密码子优化,分别表达了未经改造的富含AT(72.3%AT)和人工合成的富含GC(52.5%AT)的基因,TetC-AT和TetC-GC的表达量分别为总可溶蛋白的25%和10%。2.4在植物抗性方面的研究在抗虫性方面,Kota和Cosa分别于1999年、2001年将BTCryZAaZ基因转入烟草叶绿体,前者可100%杀死4000多倍抗性的抗性虫,后者报道BT表达量达46.1%。在抗逆性方面,人们通过编码SOD、APx等酶的基因已经转入到烟草、苜蓿、马铃薯、棉花的叶绿体中,提高了植物的耐氧化能力,从而提高了植物对环境胁迫的耐受能力。2.5叶绿体基因组在系统发育学上的应用叶绿体在系统发育学上的优点:一是叶绿体基因组是仅次于核基因组的第二大基因组,为比较研究提供了一个较大的数据基础;二是叶绿体DNA的核酸置换率适中,在应用上很有价值。然而,用叶绿体DNA研究系统发育也存在着明显的不足:一是叶绿体基因组是母性遗传的,因此并不能单靠叶绿体基因组来解释居群间的杂交现象;二是虽然有越来越多的叶绿体DNA被用作分子标记来研究类群间的系统发育关系,但只有将这些分子片段提供的信息与其他的分子片段信息、传统的形态及生理特征结合起来获得更多的信息,才能更接近系统发育的本来面目。2.6叶绿体基因在消除环境忧虑问题上的前景当今最为普遍的问题就是外源基因从转基因作物到杂草的逃逸,这一逃逸主要是通过花粉的扩散,产生超级杂草或产生和其他作物之间的基因污染,对环境极为不利。叶绿体基因工程产生的基因逃逸现象的风险远远低于核转化作物,因为大多数作物中的质体DNA都是母系遗传,这样就可以避免作物和作物、作物和杂草之间的杂交,消除人们对基因污染的忧虑。专心-专注-专业