欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    概率论与数理统计习题及答案第一章(共9页).doc

    • 资源ID:14113921       资源大小:504KB        全文页数:9页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率论与数理统计习题及答案第一章(共9页).doc

    精选优质文档-倾情为你奉上习题1-21. 选择题(1) 设随机事件A,B满足关系,则下列表述正确的是( ). (A) 若A发生, 则B必发生. (B) A , B同时发生. (C) 若A发生, 则B必不发生. (D) 若A不发生,则B一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A表示“甲种商品畅销, 乙种商品滞销”, 其对立事件表示( ).(A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销.(C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B表示“甲种商品畅销”,C表示“乙种商品滞销”,根据公式, 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色;(2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色;(3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数;(4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) 黑球,白球; (2) 黑黑,黑白,白黑,白白; (3) 0,1,2;(4) 设在生产第10件正品前共生产了n件不合格品,则样本空间为.3. 设A, B, C是三个随机事件, 试以A, B, C的运算关系来表示下列各事件:(1) 仅有A发生;(2) A, B, C中至少有一个发生;(3) A, B, C中恰有一个发生;(4) A, B, C中最多有一个发生;(5) A, B, C都不发生;(6) A不发生, B, C中至少有一个发生. 解 (1) ; (2) ; (3) ;(4) ; (5) ; (6) .4. 事件Ai表示某射手第i次(i=1, 2, 3)击中目标, 试用文字叙述下列事件:(1) A1A2; (2) A1A2A3; (3); (4) A2A3; (5); (6).解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题 (1) 设A, B为任二事件, 则下列关系正确的是( ). (A). (B).(C). (D). 解 由文氏图易知本题应选(D).(2) 若两个事件A和B同时出现的概率P(AB)=0, 则下列结论正确的是 ( ).(A) A和B互不相容. (B) AB是不可能事件. (C) AB未必是不可能事件. (D) P(A)=0或P(B)=0.解 本题答案应选(C). 设P(AB)=P(), 且P(A)p,求P(B). 解 因 ,故. 于是3. 已知, 求. 解 由公式知. 于是4. 设A, B为随机事件, 求.解 由公式可知,. 于是.5. 设A, B是两个事件, 且, .问:(1) 在什么条件下取到最大值, 最大值是多少?(2) 在什么条件下取到最小值, 最小值是多少?解 =1.3.(1) 如果, 即当时, =0.7, 则有最大值是0.6 .(2) 如果=1,或者时, 有最小值是0.3 .6. 已知, , 求A, B, C全不发生的概率.解 因为,所以=0, 即有=0.由概率一般加法公式得 由对立事件的概率性质知A ,B, C全不发生的概率是.习题1-41. 选择题在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ) (A) 都不是一等品. (B) 恰有1件一等品.(C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为, 没有一等品的概率为, 将两者加起即为0.7. 答案为(D).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是;(2) 恰有2件次品的概率是; (3 )至少有1件次品的概率是1-; (4) 至多有1件次品的概率是+; (5) 至少有2件次品的概率是+.3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率;(3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有种,两个球都是白球的取法有种,一黑一白的取法有种,由古典概率的公式知道(1) 两球都是白球的概率是;(2) 两球中一黑一白的概率是;(3) 至少有一个黑球的概率是1.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和小于;(2) 两数之积小于;(3)以上两个条件同时满足;(4) 两数之差的绝对值小于的概率.解 设X, Y为所取的两个数, 则样本空间S = (X, Y)|0<X, Y<1.,(1) PX+Y<=;(2) PXY<=;(3) PX+Y<, XY<=0.593.(4) 解 设x, y为所取的两个数, 则样本空间 = (x, y)|0<x, y<1, 记A = (x, y)|(x, y)S, |x-y|<. 参见图1-1.图1-1 第2题样本空间故 ,其中 SA, S分别表示A与的面积.习题1-51. 选择题(1) 设随机事件A, B满足P(A|B)=1, 则下列结论正确的是( )(A) A是必然事件. (B) B是必然事件.(C) . (D).解 由条件概率定义可知选(D).(2) 设A, B为两个随机事件, 且, 则下列命题正确的是( ).(A) 若, 则A, B互斥.(B) 若, 则.(C) 若, 则A, B为对立事件.(D) 若, 则B为必然事件.解 由条件概率的定义知选(B)2. 从1,2,3,4中任取一个数, 记为X, 再从1,2,X中任取一个数, 记为Y,求PY=2.解 解 PY=2=PX=1PY=2|X=1+PX=2PY=2|X=2+PX=3PY=2|X=3+PX=4PY=2|X=4 =×(0+)=.3. 口袋中有b个黑球、r个红球, 从中任取一个, 放回后再放入同颜色的球a个. 设Bi=第i次取到黑球, 求.解 用乘法公式得到 注意, a = 1和a = 0分别对应有放回和无放回抽样.4. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A表示“飞机在一次三人射击中被击落”, 则表示“恰有i发击中目标”. 为互斥的完备事件组. 于是没有击中目标概率为,恰有一发击中目标概率为,恰有两发击中目标概率为,恰有三发击中目标概率为.又已知 ,所以由全概率公式得到 5. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率. 解 (1)以A表示“取得球是白球”,表示“取得球来至第i个箱子”,i=1,2,3.则P()=, i=1,2,3, .由全概率公式知P(A)=. (2) 由贝叶斯公式知 P()=6. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查. (1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A表示“取到的是一件次品”, (i=1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知, 是样本空间S的一个划分, 且,,.(1) 由全概率公式可得 .(2) 由贝叶斯公式可得, , . 习题1-61. 选择题 (1) 设随机事件A与B互不相容, 且有P(A)>0, P(B)>0, 则下列关系成立的是( ). (A) A, B相互独立.  (B) A, B不相互独立. (C) A, B互为对立事件.  (D) A, B不互为对立事件. 解 用反证法, 本题应选(B).(2) 设事件A与B独立, 则下面的说法中错误的是( ). (A) 与独立. (B) 与独立.(C) . (D) A与B一定互斥. 解 因事件A与B独立, 故,A与及与B也相互独立. 因此本题应选(D).(3) 设事件A与 B相互独立, 且0<P(B)<1, 则下列说法错误的是( ). (A) . (B) .(C) A与B一定互斥. (D) .解 因事件A与B独立, 故也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2设A, B是任意两个事件, 其中A的概率不等于0和1, 证明P(B|A)=是事件A与B独立的充分必要条件.证 由于的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A与B独立, 知事件与B也独立, 因此,从而 .必要性. 已知, 由条件概率公式和对立事件概率公式得到,移项得 化简得 P(AB)=P(A)P(B), 因此A和B独立.3. 设三事件A , B和C两两独立, 满足条件:, 且,求.解 根据一般加法公式有.由题设可知 A, B和C 两两相互独立, , 因此有 从而,于是或, 再根据题设, 故.4 某人向同一目标独立重复射击, 每次射击命中目标的概率为p(0<p<1), 求此人第4次射击时恰好第2次命中目标的概率.解 “第4次射击恰好第2次命中” 表示4次射击中第4次命中目标, 前3次射击中有一次命中目标. 由独立重复性知所求概率为 .5. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率;(3) 目标被命中的概率. 解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) (2) (3) 总 习 题 一1. 选择题:设是三个相互独立的随机事件, 且, 则在下列给定的四对事件中不相互独立的是( ).(A)与C. (B)与. (C) 与C. (D) 与.解 由于A, B, C是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确.2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为. (1) 抽得一件为正品,一件为次品的概率为3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有的产品是第一家工厂生产的, 其它二厂各生产. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件产品, 求取到的是次品的概率. 解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设A=取到的产品是次品, Bi=取到的产品属于第i家工厂生产, i=1, 2, 3. 由于BiBj=(ij, i, j=1, 2, 3)且B1B2B3=S, 所以B1, B2, B3是S的一个划分.又 P(B1)=, P(B2) =, P(B3)=,P(A| B1)=, P(A| B2)=, P(A| B3)=,由全概率公式得P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A| B3) =0.025.4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A=设备调整成功, B=产品合格. 则全概率公式得到.由贝叶斯公式可得.5. 将两份信息分别编码为A和B传递出去. 接收站收到时, A被误收作B的概率为0.02, 而B被误收作A的概率为0.01, 信息A与信息B传送的频繁程度为2:1. 若接收站收到的信息是A, 问原发信息是A的概率是多少?解 以D表示事件“将信息A传递出去”,以表示事件“将信息B传递出去”,以R表示事件“接收到信息A”,以表示事件“接收到信息B”.已知.由贝叶斯公式知.专心-专注-专业

    注意事项

    本文(概率论与数理统计习题及答案第一章(共9页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开