欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学线性规划经典题型(共2页).doc

    • 资源ID:14133618       资源大小:171.50KB        全文页数:2页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学线性规划经典题型(共2页).doc

    精选优质文档-倾情为你奉上高考线性规划归类解析一、平面区域和约束条件对应关系。例1、已知双曲线的两条渐近线与直线围成一个三角形区域,表示该区域的不等式组是()(A) (B) (C) (D) 解析:双曲线的两条渐近线方程为,与直线围成一个三角形区域(如图4所示)时有。点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。例2:在平面直角坐标系中,不等式组表示的平面区域的面积是()(A) (B)4 (C) (D)2 解析:如图,作出可行域,易知不等式组表示的平面区域是一个三角形。容易求三角形的三个顶点坐标为(,),B(2,0),C(-2,0).于是三角形的面积为:从而选。点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 图1书、11二、已知线性约束条件,探求线性截距加减的形式(非线性距离平方的形式,斜率商的形式)目标关系最值问题(重点)例3、设变量x、y满足约束条件,则的最大值为。(截距)解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z最大值为18点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。则的最小值是 .的取值范围是 .三、 含参问题:(较难) 约束条件设计参数形式,考查目标函数最值范围问题。 例4、在约束条件下,当时,目标函数C的最大值的变化范围是()A. B. C. D. 解析:画出可行域如图3所示,当时, 目标函数在处取得最大值, 即;当时, 目标函数在点处取得最大值,即,故,从而选D;点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z关于S的函数关系是求解的关键。 已知最优解成立条件,探求目标函数参数范围问题。例5已知变量,满足约束条件。若目标函数(其中)仅在点处取得最大值,则的取值范围为 。解析:如图5作出可行域,由其表示为斜率为,纵截距为的平行直线系, 要使目标函数(其中)仅在点处取得最大值。则直线过点且在直线(不含界线)之间。即则的取值范围为。点评:本题通过作出可行域,在挖掘的几何意义的条件下,借助用数形结合利用各直线间的斜率变化关系,建立满足题设条件的的不等式组即可求解。求解本题需要较强的基本功,同时对几何动态问题的能力要求较高。四、线性规划中的整点最优解问题(附近的点只的是上下左右)例6、某公司招收男职员x名,女职员y名,x和y须满足约束条件则的最大值是(A)80 (B) 85 (C) 90 (D)95解析:如图,作出可行域,由,它表示为斜率为,纵截距为的平行直线系,要使最得最大值。当直线通过取得最大值。因为,故点不是最优整数解。于是考虑可行域内点附近整点(,),(,),经检验直线经过点时,点评:在解决简单线性规划中的最优整数解时,可在去掉限制条件求得的最优解的基础上,调整优解法,通过分类讨论获得最优整数解。专心-专注-专业

    注意事项

    本文(高中数学线性规划经典题型(共2页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开