河北省2018年中考数学总复习-二次函数专题(共8页).doc
-
资源ID:14139205
资源大小:323KB
全文页数:8页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
河北省2018年中考数学总复习-二次函数专题(共8页).doc
精选优质文档-倾情为你奉上河北中考复习之二次函数一、填选题1、在同一直角坐标系中,一次函数和二次函数的图象大致为OxyAOxyBOxyCOxyD 2、某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=x2(x0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A40m/sB20m/sC10m/sD5m/s3、一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=5(t1)2+6,则小球距离地面的最大高度是()A、1米B、5米 C、6米D、7米4、如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A(2,3) B(3,2) C(3,3) D(4,3)5、如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A、B、C、D、6、如图6,抛物线与交于点,过点作轴的平行线,分别交两条抛物线于点则以下结论:来源:Zxxk.Com无论取何值,的值总是正数 当时, 其中正确结论是()A7、如图,一段抛物线:y=-x(x-3)(0x3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;如此进行下去,直至得C13若P(37,m)在第13段抛物线C13上,则m= 8、已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论错误的是()Aabc0 B3a2b Cm(am+b)a-b(m为任意实数) D4a-2b+c09、对于实数c、d,我们可用min c,d 表示c、d两数中较小的数,如min3,-1=-1若关于x的函数y=min2x2,a(x-t)2的图象关于直线x=3对称,则a、t的值可能是()A3,6 B2,-6 C2,6 D-2,610、求一元二次方程x2+3x-1=0的解,除了课本的方法外,我们也可以采用图象的方法:在平面直角坐标系中,画出直线y=x+3和双曲线y=的图象,则两图象交点的横坐标即该方程的解类似地,我们可以判断方程x3-x-1=0的解的个数有()A0个B1个C2个D3个二、解答题1、已知一条抛物线经过A(0,3)、B(4,6)两点,对称轴为 (1)求这条抛物线的解析式; (2)试证明这条抛物线与x轴的两个交点中,必有一点C,使得对于x轴上任意一点 D,都有AC+BCAD+BDyxGDECABODEBDAC图 72、如图7,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴,桥拱的DGD部分为一段抛物线,顶点G的高度为8米,AD和AD是两侧高为5.5米的支柱,OA和OA为两个方向的汽车通行区,宽都为15米,线段CD和CD为两段对称的上桥斜坡,其坡度为14 (1)求拱桥DGD所在抛物线的解析式及CC的长; (2)BE和BE为支撑斜坡的立柱,其高都为4米,相应的AB和AB为两个方向的行人及非机动车通行区试求AB和AB的宽; (3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米今有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米它能否从OA(或OA)区域安全通过?请说明理由3、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图8所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件)。3m10m1m跳台支柱水面池边ByAx在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。 (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并说明理由。图11 O z(万元) x(元)4、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)当每吨售价为260元时,月销售量为45吨该经销店为提高经营利润,准备采取降价的方式进行促销经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元设每吨材料售价为x(元),该经销店的月利润为y(元)(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的二次函数关系式(不要求写出x的取值范围);(3)请把(2)中的二次函数配方成的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元; (4)小静说:“当月利润最大时,月销售额也最大”你认为对吗?请说明理由xyO3 911AB图135、如图13,已知二次函数的图像经过点A和点B(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图像上(其中m0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离6、研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价、(万元)均与x满足一次函数关系.(注:年利润年销售额 全部费用)(1)成果表明,在甲地生产并销售x吨时,请你用含x的代数式表示甲地当年的年销售额,并求年利润(万元)与x之间的函数关系式;(2)成果表明,在乙地生产并销售x吨时,(n为常数),且在乙地当年的最大年利润为35万元试确定n的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1)、(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线(a0)的顶点坐标是7、已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t0(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=-4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值8、某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额-成本-广告费)若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10a40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额-成本-附加费)(1)当x=1000时,y= 140元/件,w内= 57500元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?9、如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为 A (1,0),B (1,5),D (4,0)(1)求c,b (用含t的代数式表示):(2)当4t5时,设抛物线分别与线段AB,CD交于点M,N在点P的运动过程中,你认为AMP的大小是否会变化?若变化,说明理由;若不变,求出AMP的值;求MPN的面积S与t的函数关系式,并求t为何值时,;(3)在矩形ABCD的内部(不含边界),把横、纵 坐标都是整数的点称为“好点”若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围10、.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在550之间,每张薄板的成本价(单位:元)与它的面积(单位:)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润是26元(利润=出厂价-成本价). 求一张薄板的利润与边长之间满足的函数关系式; 当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?次数n21速度x4060指数Q42010011、某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩Q=W+100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比试行中得到了表中的数据(1)用含x和n的式子表示Q;(2)当x=70,Q=450时,求n的值;(3)若n=3,要使Q最大,确定x的值;(4)设n=2,x=40,能否在n增加m%(m0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由12、A,B,C,D,E,F,G、H,O九个格点抛物线l的解析式为y=(-1)nx2+bx+c(n为整数)(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数13、如图,已知点O(0,0),A(-5,0),B(2,1),抛物线l:y=-(x-h)2+1(h为常数)与y轴的交点为C(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为yc,求yc的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1x20,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值214、如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围15、已知ABC中,边BC的长与BC边上的高的和为20(1)写出ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,ABC的面积最大?最大面积是多少?(3)当ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明16、根据对市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2ax2+bx的图象如图所示(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?17、如图,在直角坐标系中,点P的坐标是(n,0)(n0),抛物线y=-x2+bx+c经过原点O和点P已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3)(1)求c,b并写出抛物线对称轴及y的最大值(用含有n的代数式表示);(2)求证:抛物线的顶点在函数y=x2的图象上;(3)若抛物线与直线AD交于点N,求n为何值时,NPO的面积为 ;(4)若抛物线经过正方形区域ABCD(含边界),请直接写出n的取值范围 xyO8020100401000602000图918、某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元物价部门规定其销售单价不得高于每千克70元,也不得低于30元市场调查发现,单价定为70元时,日均销售60千克;单价每降低元,日均多售出千克在销售过程中,每天还要支出其它费用500元设销售单价为元,日均获利为元(1) 求关于的二次函数关系式,并注明的取值范围;(2) 将(1)中所求出的二次函数配方成的形式,写出顶点坐标;在图9所示的坐标系中画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少?(3) 若将这种化工原料全部售出, 比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少?(在运算过程中,天数不足一天时,按整天计算)19、某商店经销一种销售成本为每千克40元的水产品据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克针对这种水产品的销售情况,请解答以下问题:(1) 当销售单价定为每千克55元时,计算月销售量和月销售利润;(2) 设销售单价为每千克元,月销售利润为元,求与的函数关系式(不必写出的取值范围);(3) 商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?20、某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元进行批量生产已知生产每件产品的成本为40元在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额生产成本投资)为z(万元)(1)试写出y与x之间的函数关系式(不必写出x的取值范围);(2)试写出z与x之间的函数关系式(不必写出x的取值范围);(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万件?(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年获利不低于1130万元请你借助函数的大致图象说明,第二年的销售单价x(元)应确定在什么范围内?专心-专注-专业