通信原理实验资料(共39页).doc
精选优质文档-倾情为你奉上第一章 信号源实验实验一 CPLD可编程数字信号发生器实验一、 实验目的1、 熟悉各种时钟信号的特点及波形。2、 熟悉各种数字信号的特点及波形。二、 实验内容1、 熟悉CPLD可编程信号发生器各测量点波形。2、 测量并分析各测量点波形及数据。3、 学习CPLD可编程器件的编程操作。三、 实验器材1、 信号源模块 一块2、 连接线 若干3、 20M双踪示波器 一台四、 实验原理CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。它由CPLD可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。晶振JZ1用来产生系统内的32.768MHz主时钟。1、 CPLD数字信号发生器包含以下五部分:1) 时钟信号产生电路将晶振产生的32.768MHZ时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。通过拨码开关S4和S5来改变时钟频率。有两组时钟输出,输出点为“CLK1”和“CLK2”,S4控制“CLK1”输出时钟的频率,S5控制“CLK2”输出时钟的频率。2) 伪随机序列产生电路通常产生伪随机序列的电路为一反馈移存器。它又可分为线性反馈移存器和非线性反馈移存器两类。由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。以15位m序列为例,说明m序列产生原理。在图1-1中示出一个4级反馈移存器。若其初始状态为()(1,1,1,1),则在移位一次时和模2相加产生新的输入,新的状态变为()(0,1,1,1),这样移位15次后又回到初始状态(1,1,1,1)。不难看出,若初始状态为全“0”,即“0,0,0,0”,则移位后得到的仍然为全“0”状态。这就意味着在这种反馈寄存器中应避免出现全“0”状态,不然移位寄存器的状态将不会改变。因为4级移存器共有24=16种可能的不同状态。除全“0”状态外,剩下15种状态可用,即由任何4级反馈移存器产生的序列的周期最长为15。图1-1 15位m序列产生信号源产生一个15位的m序列,由“PN”端口输出,可根据需要生成不同频率的伪随机码,码型为1010,频率由S4控制,对应关系如表1-2所示。3) 帧同步信号产生电路信号源产生8K帧同步信号,用作脉冲编码调制的帧同步输入,由“FS”输出。4) NRZ码复用电路以及码选信号产生电路码选信号产生电路:主要用于8选1电路的码选信号;NRZ码复用电路:将三路八位串行信号送入CPLD,进行固定速率时分复用,复用输出一路24位NRZ码,输出端口为“NRZ”,码速率由拨码开关S5控制,对应关系见表1-2。5) 终端接收解复用电路将NRZ码(从“NRZIN”输入)、位同步时钟(从“BS”输入)和帧同步信号(从“FSIN”输入)送入CPLD,进行解复用,将串行码转换为并行码,输出到终端光条(U6和U4)显示。2、 24位NRZ码产生电路本单元产生NRZ信号,信号速率根据输入时钟不同自行选择,帧结构如图1-2所示。帧长为24位,其中首位无定义(本实验系统将首位固定为0),第2位到第8位是帧同步码(7位巴克码),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。光条(U1、U2和U3)对应位亮状态表示信号1,灭状态表示信号0。图1-2 帧结构1) 并行码产生器由手动拨码开关S1、S2、S3控制产生帧同步码和16路数据位,每组发光二极管的前八位对应8个数据位。拨码开关拨上为1,拨下为0。2)八选一电路采用8路数据选择器74LS151,其管脚定义如图1-3所示。真值表如表1-1所示。表1-1 74LS151真值表CBASTRYLLLLD0LLHLD1LHLLD2LHHLD3HLLLD4HLHLD5HHLLD6HHHLD7×××HL图1-3 74LS151管脚定义74LS151为互补输出的8选1数据选择器,数据选择端(地址端)为C、B、A,按二进制译码,从8个输入数据D0D7中选择一个需要的数据。STR为选通端,低电平有效。本信号源采用三组8选1电路,U12,U13,U15的地址信号输入端A、B、C分别接CPLD输出的74151_A、74151_B、74151_C信号,它们的8个数据信号输入端D0D7分别与S1,S2,S3输出的8个并行信号相连。由表1-1可以分析出U12,U13,U15输出信号都是以8位为周期的串行信号。五、 测试点说明CLK1:第一组时钟信号输出端口,通过拨码开关S4选择频率。CLK2:第二组时钟信号输出端口,通过拨码开关S5选择频率。FS:脉冲编码调制的帧同步信号输出端口。(窄脉冲,频率为8K)NRZ:24位NRZ信号输出端口,码型由拨码开关S1,S2,S3控制,码速率和第二组时钟速率相同,由S5控制。PN:伪随机序列输出,码型为1010,码速率和第一组时钟速率相同,由S4控制。NRZIN:解码后NRZ码输入。BS:NRZ码解复用时的位同步信号输入。FSIN:NRZ码解复用时的帧同步信号输入。六、 实验步骤1、 打开信号源模块的电源开关POWER1,使信号源模块工作。2、 观测时钟信号输出波形。信号源输出两组时钟信号,对应输出点为“CLK1”和“CLK2”,拨码开关S4的作用是改变第一组时钟“CLK1”的输出频率,拨码开关S5的作用是改变第二组时钟“CLK2”的输出频率。拨码开关拨上为1,拨下为0,拨码开关和时钟的对应关系如下表所示表1-2拨码开关时钟拨码开关时钟000032.768M1000128K000116.384M100164K00108.192M101032K00114.096M101116K01002.048M11008K01011.024M11014K0110512K11102K0111256K11111K1) 根据表1-2改变S4,用示波器观测第一组时钟信号“CLK1”的输出波形;2) 根据表1-2改变S5,用示波器观测第二组时钟信号“CLK2”的输出波形。3、 用示波器观测帧同步信号输出波形信号源提供脉冲编码调制的帧同步信号,在点“FS”输出,一般时钟设置为2.048M、256K,在后面的实验中有用到。将拨码开关S4分别设置为“0100”、“0111”或别的数字,用示波器观测“FS”的输出波形。4、 用示波器观测伪随机信号输出波形伪随机信号码型为1010,码速率和第一组时钟速率相同,由S4控制。根据表1-2改变S4,用示波器观测“PN”的输出波形。5、 观测NRZ码输出波形信号源提供24位NRZ码,码型由拨码开关S1,S2,S3控制,码速率和第二组时钟速率相同,由S5控制。1) 将拨码开关S1,S2,S3设置为“ ”,S5设为“1010”,用示波器观测“NRZ”输出波形。2) 保持码型不变,改变码速率(改变S5设置值),用示波器观测“NRZ”输出波形。3) 保持码速率不变,改变码型(改变S1、S2、S3设置值),用示波器观测“NRZ”输出波形。七、 实验报告要求1、 分析各种时钟信号及数字信号产生的方法,叙述其功用。2、 画出各种时钟信号及数字信号的波形。3、 记录实验过程中遇到的问题并进行分析,提出改进建议。实验二 抽样定理和PAM调制解调实验一、 实验目的1、 通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。2、 通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。二、 实验内容1、 观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意观察它们之间的相互关系及特点。2、 改变模拟输入信号或抽样时钟的频率,多次观察波形。 三、 实验器材1、 信号源模块 一块2、 号模块 一块3、 20M双踪示波器 一台4、 连接线 若干四、 实验原理(一)基本原理1、抽样定理抽样定理表明:一个频带限制在(0,)内的时间连续信号,如果以T秒的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。假定将信号和周期为T的冲激函数相乘,如图3-1所示。乘积便是均匀间隔为T秒的冲激序列,这些冲激序列的强度等于相应瞬时上的值,它表示对函数的抽样。若用表示此抽样函数,则有:图3-1 抽样与恢复假设、和的频谱分别为、和。按照频率卷积定理,的傅立叶变换是和的卷积:因为 所以 由卷积关系,上式可写成 该式表明,已抽样信号的频谱是无穷多个间隔为s的相迭加而成。这就意味着中包含的全部信息。需要注意,若抽样间隔T变得大于,则和的卷积在相邻的周期内存在重叠(亦称混叠),因此不能由恢复。可见,是抽样的最大间隔,它被称为奈奎斯特间隔。上面讨论了低通型连续信号的抽样。如果连续信号的频带不是限于0与之间,而是限制在(信号的最低频率)与(信号的最高频率)之间(带通型连续信号),那么,其抽样频率并不要求达到,而是达到2B即可,即要求抽样频率为带通信号带宽的两倍。00图3-2画出抽样频率2B(无混叠)和2B(有混叠)时两种情况下冲激抽样信号的频谱。(a) 连续信号的频谱100 (b) 高抽样频率时的抽样信号及频谱(无混叠)0 10(c) 低抽样频率时的抽样信号及频谱(混叠)图3-2 采用不同抽样频率时抽样信号的频谱2、脉冲振幅调制(PAM)所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。但是实际上真正的冲激脉冲串并不能付之实现,而通常只能采用窄脉冲串来实现。因而,研究窄脉冲作为脉冲载波的PAM方式,将具有实际意义。图3-3 自然抽样及平顶抽样波形PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,已抽样信号ms(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。(二) 电路组成 脉冲幅度调制实验系统如图3-4所示,主要由抽样保持芯片LF398和解调滤波电路两部分组成,电路原理图如图3-5所示。图3-4 脉冲振幅调制电路原理框图图3-5 脉冲幅度调制电路原理图(三)实验电路工作原理1、 PAM调制电路如图3-5所示,LF398是一个专用的采样保持芯片,它具有很高的直流精度和较高的采样速率,器件的动态性能和保持性能可以通过合适的外接保持电容达到最佳。LF398的内部结构如图3-6所示; 图3-6 LF398的内部电路结构N1是输入缓冲放大器,N2是高输入阻抗射极输出器。S为逻辑控制采样/保持开关,当S接通时,开始采样;当S断开时,开始保持。LF398的引脚功能为:3、12脚:正负电源输入端。1脚:Vi,模拟电压输入端。11脚:MCTR,逻辑控制输入端,高电平为采样,低电平为保持。10脚:MREF,逻辑控制电平参考端,一般接地。8脚:HOC,采样/保持电容接入端。7脚:OUT,采样/保持输出端。如图3-5所示,被抽样信号从PAM-SIN输入,进入LF398的1脚Vi端,经内部输入缓冲放大器N1放大后送到模拟开关S,此时,将抽样脉冲作为S的控制信号,当LF398的11脚MCTR端为高电平时开关接通,为低电平时开关断开。然后经过射极输出器N2输出比较理想的脉冲幅度调制信号。K1为“平顶抽样”、“自然抽样”选择开关。2、PAM解调与滤波电路解调滤波电路由集成运放电路TL084组成。组成了一个二阶有源低通滤波器,其截止频率设计在3.4KHz左右,因为该滤波器有着解调的作用,因此它的质量好坏直接影响着系统的工作状态。该电路还在后续实验接收部分有用到。电路如图3-7所示图3-7 PAM解调滤波电路五、 测试点说明1、输入点参考说明PAM-SIN:音频信号输入端口PAMCLK:抽样时钟信号输入端口IN:PAM解调滤波电路输入端口2、输出点说明自然抽样输出:自然抽样信号输出端口平顶抽样输出:平顶抽样信号输出端口OUT:PAM解调滤波输出端口六、 实验步骤及注意事项1、 将信号源模块、模块1固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触良好。2、 插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块1的电源开关拨下,观察指示灯是否点亮,红灯为+5V电源指示灯,绿灯为-12V电源指示灯,黄色为+12V电源指示灯。(注意,此处只是验证通电是否成功,在实验中均是先连线,再打开电源做实验,不要带电连线)。3、 观测PAM自然抽样波形1) 用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在4V左右。2) 将信号源上S4设为“1010”,使“CLK1”输出32K时钟。3) 将模块1上K1选到“自然”。4) 关闭电源,按如下方式连线源端口目标端口连线说明信号源:“2K同步正弦波”模块1:“PAM-SIN”提供被抽样信号信号源:“CLK1”模块1:“PAMCLK”提供抽样时钟* 检查连线是否正确,检查无误后打开电源5) 用示波器在“自然抽样输出”处观察PAM自然抽样波形。4、 观测PAM平顶抽样波形a) 用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在4V左右。b) 将信号源上S1、S2、S3依次设为“”、“”、“”,将S5拨为“1000”,使“NRZ”输出速率为128K,抽样频率为:NRZ频率/8(实验中的电路,NRZ为“1”时抽样,为“0”时保持。在平顶抽样中,抽样脉冲为窄脉冲)。c) 将K1设为“平顶”。关闭电源,按下列方式进行连线。源端口目标端口连线说明信号源:“2K同步正弦波模块1:“PAM-SIN”提供被抽样信号信号源:“NRZ”模块1:“PAMCLK”提供抽样脉冲d) 打开电源,用示波器在“平顶抽样输出”处观察平顶抽样波形。5、 改变抽样时钟频率,观测自然抽样信号,验证抽样定理。6、 观测解码后PAM波形与原信号的区别1) 步骤3的前3步不变,按如下方式连线源端口目标端口连线说明信号源:“2K同步正弦波”模块1:“PAM-SIN”提供被抽样信号信号源:“CLK1”模块1:“PAMCLK”提供抽样时钟模块1:“自然抽样输出”模块1:“IN”将PAM信号进行译码2) 将K1设为“自然”,用“PAM-SIN”信号做示波器的触发源,用双踪示波器对比观测“PAM-SIN”和“OUT”波形。7、 将信号源产生的音乐信号输入到模块1的“PAM-SIN”,“自然抽样输出”和“IN”相连,PAM解调信号输出到信号源上的“音频信号输入”,通过扬声器听语音,感性判断该系统对话音信号的传输质量。七、 实验思考题1、 简述平顶抽样和自然抽样的原理及实现方法。2、 在抽样之后,调制波形中包不包含直流分量,为什么?3、 造成系统失真的原因有哪些?4、 为什么采用低通滤波器就可以完成PAM解调?八、 实验报告要求1、 分析电路的工作原理,叙述其工作过程。2、 绘出所做实验的电路、仪表连接调测图。并列出所测各点的波形、频率、电压等有关数据,对所测数据做简要分析说明。必要时借助于计算公式及推导。3、 对实验思考题加以分析,按照要求作出回答。专心-专注-专业实验三 振幅键控(ASK)调制与解调实验一、 实验目的1、 掌握用键控法产生ASK信号的方法。2、 掌握ASK非相干解调的原理。二、 实验内容1、 观察ASK调制信号波形2、 观察ASK解调信号波形。三、 实验器材1、 信号源模块 一块2、 号模块 一块3、 号模块 一块4、 号模块 一块5、 20M双踪示波器 一台6、 连接线 若干四、 基本原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK)、二进制移频键控(2FSK)、二进制移相键控(2PSK)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。1、 2ASK调制原理。在振幅键控中载波幅度是随着基带信号的变化而变化的。使载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2ASK信号,这种二进制振幅键控方式称为通断键控(OOK)。2ASK信号典型的时域波形如图9-1所示,其时域数学表达式为: (9-1)式中,A为未调载波幅度,为载波角频率,为符合下列关系的二进制序列的第n个码元: (9-2)综合式9-1和式9-2,令A1,则2ASK信号的一般时域表达式为: (9-3)式中,Ts为码元间隔,为持续时间 Ts/2,Ts/2 内任意波形形状的脉冲(分析时一般设为归一化矩形脉冲),而就是代表二进制信息的随机单极性脉冲序列。 图9-1 2ASK信号的典型时域波形2ASK信号的产生方法比较简单。首先,因2ASK信号的特征是对载波的“通断键控”,用一个模拟开关作为调制载波的输出通/断控制门,由二进制序列控制门的通断,1时开关导通;0时开关截止,这种调制方式称为通断键控法。其次,2ASK信号可视为S(t)与载波的乘积,故用模拟乘法器实现2ASK调制也是很容易想到的另一种方式,称其为乘积法。2、 2ASK解调原理。2ASK解调有非相干解调(包络检波法)和相干解调(同步检测法)两种方法,相应的接收系统原理框图如图9-2所示:(a)非相干方式(b)相干方式图9-2 2ASK解调原理框图五、 实验原理1、 ASK调制电路在这里,我们采用的是通断键控法,2ASK调制的基带信号和载波信号分别从“ASK-NRZ”和“ASK载波”输入,其实验框图和电路原理图分别如图9-3、图9-4所示。图9-3 ASK调制实验框图图9-4 ASK调制原理图2、 ASK解调电路图9-5 ASK解调实验框图我们采用的是包络检波法。实验框图如图9-5所示。ASK调制信号从“ASKIN”输入,经C1和R1组成的耦合电路至半波整流器(由D4、D5组成),半波整流后的信号经低通滤波器U4(TL082)、电压比较器U1(LM339)与参考电位比较后送入抽样判决器进行抽样判决,最后得到解调输出的二进制信号。电位器W1用来调节电压比较器U1的判决电压。判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。抽样判决用的时钟信号就是2ASK基带信号的位同步信号,该信号从“ASK-BS”输入,可以从信号源直接引入,也可以从同步信号恢复模块引入。在实际应用的通信系统中,解调器的输入端都有一个带通滤波器来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰的条件。本实验中为了简化实验设备,在调制部分的输出端没有加带通滤波器,并且假设信道是理想的,所以在解调部分的输入端也没有加带通滤波器。六、 测试点说明1、 信号输入点参考说明ASK-NRZ: ASK基带信号输入点。ASK载波:ASK载波信号输入点。ASKIN:ASK调制信号输入点。ASK-BS:ASK解调位同步时钟输入点。2、 信号输出点参考说明ASK-OUT:ASK调制信号输出点。TH2:ASK信号经低通滤波器后的信号观测点。ASK-DOUT:ASK解调信号经电压比较器后的信号输出点(未经同步判决)。OUT1:ASK解调信号输出点。七、 实验步骤(一)ASK调制实验1、 将信号源模块和模块3、4、7固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触良好。2、 按照下表进行实验连线:源端口目的端口连线说明信号源:PN(8K)模块3:ASK-NRZS4拨为1100,PN是8K伪随机序列信号源:64K同步正弦波模块3:ASK载波提供ASK调制载波,幅度为4V* 检查连线是否正确,检查无误后打开电源3、 以信号输入点“ASK-NRZ”的信号为内触发源,用示波器观察点 “ASK-OUT”输出,即为PN码经过ASK调制后的波形。4、 通过信号源模块上的拨码开关S4控制产生PN码的频率,改变送入的基带信号,重复上述实验;也可以改变载波频率来实验。5、 实验结束关闭电源。(二)ASK解调实验1、 接着上面ASK调制实验继续连线:源端口目的端口连线说明模块3:ASK-OUT模块4:ASKINASK解调输入模块4:ASK-DOUT模块7:DIN锁相环法位同步提取信号输入模块7:BS模块3:ASK-BS提取的位同步信号* 检查连线是否正确,检查无误后再次打开电源2、 将模块7上的拨码开关S2拨为“ASK-NRZ”频率的16倍,如:“ASK-NRZ” 选8K时,S2选128K,即拨“1000”。观察模块4上信号输出点“ASK-DOUT”处的波形,把电位器W3顺时针拧到最大,并调节的电位器W1(改变判决门限),直到在“ASK-DOUT”处观察到稳定的PN码。3、 观察ASK解调输出“OUT1”处波形,并与信号源产生的PN码进行比较。调制前的信号与解调后的信号形状一致,相位有一定偏移。4、 通过信号源模块上的拨码开关S4控制产生PN码,改变送入的基带信号,重复上述实验;也可以改变载波频率来实验。5、 实验结束关闭电源,拆除连线,整理实验数据与波形,完成实验报告。八、 实验报告要求1、 分析实验电路的工作原理,叙述其工作过程。2、 根据实验测试记录,在坐标纸上画出各测量点的波形图,并分析实验现象。3、 对实验思考题加以分析,按照要求做出回答,并尝试画出本实验的电路原理图。4、 写出完成本次实验后的心得体会以及对本次实验的改进建议。实验四 移频键控FSK调制与解调实验一、 实验目的1、 掌握用键控法产生FSK信号的方法。2、 掌握FSK过零检测解调的原理。二、 实验内容1、 观察FSK调制信号波形。2、 观察FSK解调信号波形。3、 观察FSK过零检测解调器各点波形。三、 实验器材1、 信号源模块 一块2、 号模块 一块3、 号模块 一块4、 号模块 一块5、 20M双踪示波器 一台6、 连接线 若干四、 实验原理1、 2FSK调制原理。2FSK信号是用载波频率的变化来表征被传信息的状态的,被调载波的频率随二进制序列0、1状态而变化,即载频为时代表传0,载频为时代表传1。显然,2FSK信号完全可以看成两个分别以和为载频、以和为被传二进制序列的两种2ASK信号的合成。2FSK信号的典型时域波形如图10-1所示,其一般时域数学表达式为 图10-1 2FSK信号的典型时域波形 (10-1)式中,是的反码,即因为2FSK属于频率调制,通常可定义其移频键控指数为 (10-2)显然,h与模拟调频信号的调频指数的性质是一样的,其大小对已调波带宽有很大影响。2FSK信号与2ASK信号的相似之处是含有载频离散谱分量,也就是说,二者均可以采用非相干方式进行解调。可以看出,当h<1时,2FSK信号的功率谱与2ASK的极为相似,呈单峰状;当h>>1时,2FSK信号功率谱呈双峰状,此时的信号带宽近似为(Hz) (10-3)2FSK信号的产生通常有两种方式:(1)频率选择法;(2)载波调频法。由于频率选择法产生的2FSK信号为两个彼此独立的载波振荡器输出信号之和,在二进制码元状态转换(或)时刻,2FSK信号的相位通常是不连续的,这会不利于已调信号功率谱旁瓣分量的收敛。载波调频法是在一个直接调频器中产生2FSK信号,这时的已调信号出自同一个振荡器,信号相位在载频变化时始终是连续的,这将有利于已调信号功率谱旁瓣分量的收敛,使信号功率更集中于信号带宽内。在这里,我们采用的是频率选择法,其调制原理框图如图10-2所示:图10-2 2FSK调制原理框图由图可知,从“FSK-NRZ”输入的基带信号分成两路,1路经U5(LM339)反相后接至U4B(4066)的控制端,另1路直接接至U4A(4066)的控制端。从“FSK载波A”和“FSK载波B”输入的载波信号分别接至U4A和U4B的输入端。当基带信号为“1”时,模拟开关U4A打开,U4B关闭,输出第一路载波;当基带信号为“0”时,U405A关闭,U405B打开,此时输出第二路载波,再通过相加器就可以得到FSK调制信号。2、 2FSK解调原理(a)非相干方式(b)相干方式(c)过零检测法图10-3 2FSK解调原理框图FSK有多种方法解调,如包络检波法、相干解调法、鉴频法、过零检测法及差分检波法等,相应的接收系统的框图如图10-3所示。这里采用的是过零检测法对FSK调制信号进行解调。大家知道,2FSK信号的过零点数随不同载频而异,故检出过零点数就可以得到关于频率的差异,这就是过零检测法的基本思想。用过零检测法对FSK信号进行解调的原理框图如图10-3(c)所示。其中整形1和整形2的功能类似于比较器,可在其输入端将输入信号叠加在2.5V上。2FSK调制信号从“FSKIN”输入。U6(LM339)的判决电压设置在2.5V,可把输入信号进行硬限幅处理。这样,整形1将FSK信号变为TTL电平;整形2和抽样电路共同构成抽样判决器,其判决电压可通过电位器W2进行调节。单稳1(74LS123)和单稳2(74LS123)分别被设置为上升沿触发和下降沿触发,它们与相加器U7(74LS32)一起共同对TTL电平的FSK信号进行微分、整流处理。电阻R30与R31决定上升沿脉冲宽度及下降沿脉冲宽度。抽样判决器的时钟信号就是FSK基带信号的位同步信号,该信号应从“FSK-BS”输入,可以从信号源直接引入,也可以从同步信号恢复模块引入。五、 测试点说明1、 输入点参考说明FSK调制模块:FSK-NRZ:FSK基带信号输入点。FSK载波A:A路载波输入点。FSK载波B:B路载波输入点。FSK解调模块:FSKIN:FSK调制信号输入点。FSK-BS:FSK解调位同步时钟输入点。2、 输出点参考说明FSK调制模块:TH7:FSK-NRZ经过反相后信号观测点。FSK-OUT:FSK调制信号输出点。FSK解调模块:TH7:FSK调制信号经整形1(U6 LM339)后的波形观测点。TH8:FSK调制信号经单稳(U10A 74LS123)的信号观测点。TH9:FSK调制信号经单稳(U10B 74LS123)的信号观测点。TH10:FSK调制信号经两路单稳后相加信号观测点。TH11:FSK信号经低通滤波器后的输出信号FSK-DOUT:FSK解调信号经电压比较器后的信号输出点(未经同步判决)。OUT2:FSK解调信号输出点。六、 实验步骤(一)FSK调制实验1、 将信号源模块和模块3、4、7固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触良好。2、 按照下表进行实验连线:源端口目的端口连线说明信号源:PN(8K)模块3:FSK-NRZS4拨为“1100”,PN是 8K伪随机码信号源:128K同步正弦波模块3:载波A提供FSK调制A路载波,幅度为4V信号源:64K同步正弦波模块3:载波B提供FSK调制B路载波,幅度为3V* 检查连线是否正确,检查无误后打开电源3、 将模块3上拨码开关S1都拨上。以信号输入点“FSK-NRZ”的信号为内触发源,用双踪示波器同时观察点“FSK-NRZ”和点“FSK-OUT”输出的波形。4、 单独将S1拨为“01”或“10”,在“FSK-OUT”处观测单独载波调制波形。5、 通过信号源模块上的拨码开关S4改变PN码频率后送出,重复上述实验。6、 实验结束关闭电源。(二)FSK解调实验1、 接着上面FSK调制实验继续连线:源端口目的端口连线说明模块3:FSK-OUT模块4:FSKINFSK解调输入模块4:FSK-DOUT模块7:DIN锁相环法位同步提取信号输入模块7:BS模块3:FSK-BS提取的位同步信号* 检查连线是否正确,检查无误后再次打开电源2、 将模块7上的拨码开关S2拨为“1000”,观察模块4上信号输出点“FSK-DOUT”处的波形,并调节模块4上的电位器W5(顺时针拧到最大),直到在该点观察到稳定的PN码。3、 用示波器双踪分别观察模块3上的“FSK-NRZ”和模块四上的“OUT2”处的波形,将“OUT2”处FSK解调信号与信号源产生的PN码进行比较。4、 实验结束关闭电源,拆除连线,整理实验数据及波形完成实验报告。七、 实验报告要求1、 分析实验电路的工作原理,叙述其工作过程。2、 根据实验测试记录,在坐标纸上画出各测量点的波形图,并分析实验现象。3、 写出完成本次实验后的心得体会以及对本次实验的改进建议。实验五 脉冲编码调制解调实验一、 实验目的1、 掌握脉冲编码调制与解调的原理。2、 掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。3、 了解脉冲编码调制信号的频谱特性。4、 了解大规模集成电路W的使用方法。二、 实验内容1、 观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。2、 改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。3、 改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。4、 改变位同步时钟,观测脉冲编码调制波形。三、 实验器材1、 信号源模块 一块2、 号模块 一块3、 20M双踪示波器 一台4、 立体声耳机 一副5、 连接线 若干四、 实验原理(一)基本原理模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。脉码调制的过程如图5