欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    求数列通项公式an的常用方法(共3页).doc

    • 资源ID:14154101       资源大小:298KB        全文页数:3页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    求数列通项公式an的常用方法(共3页).doc

    精选优质文档-倾情为你奉上专题:求数列通项公式的常用方法一.递推数列求通项问题一 观察法已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。例1 已知数列 写出此数列的一个通项公式。解 观察数列前若干项可得通项公式为二、公式法1 运用等差(等比)数列的通项公式.2 已知数列前项和,则(注意:不能忘记讨论)例2 已知数列an的前n和满足求此数列的通项公式。解得,当所以三.(可以求和)累加法例3、在数列中,已知=1,当时,有,求数列的通项公式。解析: 上述个等式相加可得: 练习:1、已知数列,=2,=+3+2,求。2、 已知数列满足求通项公式3、若数列的递推公式为,则求这个数列的通项公式4. 已知数列满足 且 ,则求这个数列的通项公式四.(可以求积)累积法例4、在数列中,已知有,()求数列的通项公式。解析:原式可化为又也满足上式; 练习:1、已知数列满足,求。2、已知,求数列通项公式.3、已知数列满足,求通项公式五 待定常数法可将其转化为,其中,则数列为公比等于A的等比数列,然后求即可。例5 在数列中, ,当时,有,求数列的通项公式。解析:设,则,于是是以为首项,以3为公比的等比数列。练习:1、 在数列中, ,求数列的通项公式。2、已知,求。3、已知数列满足,求通项4.已知数列满足,求数列的通项公式。六()倒数法例6 已知,求。解析:两边取倒数得:,设则;令;展开后得,;是以为首项,为公比的等比数列。;即,得;练习:1、设数列满足求2、在数列中,求数列的通项公式.3、在数列中,求数列的通项公式.专心-专注-专业

    注意事项

    本文(求数列通项公式an的常用方法(共3页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开