110KV变电站主变压器继电保护的设计---正文(共54页).doc
-
资源ID:14161219
资源大小:547.50KB
全文页数:54页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
110KV变电站主变压器继电保护的设计---正文(共54页).doc
精选优质文档-倾情为你奉上目 录附件 110kV变电站电气主接线图专心-专注-专业110kV变电站的设计摘要:本设计首先对电力工业发展、电力系统的概念和变电站的设计等做了一个初步的概括。然后进行变电站的负荷计算和无功补偿计算等等。再利用结果对主变压器台数和容量进行选择和主结线方案的确定。其中对主接线的选择做了较为详细的说明,也通过图形对照进行确定。然后通过对短路的计算,选择高压开关设备。对于来自外部的雷电过电压,则进行了防雷保护和接地装置的设计。其中电器设备的选择主要包括:断路器、隔离开关、PT、CT、支柱绝缘子、套管、母线导体、避雷器、电抗器、高压熔断器等。关键词:变电站;一次系统;短路计算;设备选型Design on 110kV substationAbstract: This design develops to the electric power industry of the country first; the concept of the electric power system waited to do with the type of the transformer substation a first step generalizes. Then precede the burthen calculation of the transformer substation with have no the coefficient the in expiation of calculation the etc.Make use of again the result to count to the main transformer set to proceed the choice with capacity to settle with main knot line project really.Among them connect to the lord the linear choice did than for expatiation, also pass the sketch check against the proceeding makes sure.Then pass to the short-circuit calculation, choice high pressure switch equipments.And did the synopsis the elucidation. Proceeded come from exterior thunder and lightning conduct electricity press, very much to defend the thunder protect with the design that connect a ground of devices.Electrical equipments primarily includes: circuit-breaker, disconnecting switch,potential transformer , current transformer , post-type insulator ,bulbar conductor ,lighting arrestor etc .Keywords: Transformer Substation, The Primary System, short-circuit calculation, Choice Equipments.第1章 绪 论1.1 供电技术的发展概况电是能量的一种表现形式,电力已成为工农业生产不可缺少的动力,并广泛应用到一切生产部门和日常生活方面。电能有许多优点:首先,它可简便地转变成另一种形式的能量。例如,工厂中的电动机,就是交电能转换成机械能,拖动各种机械;又如我们常用的电灯,是将电能转变为光能,满足照明需要。其次,电能经过高压输电线路,还可输送很长的距离,供给远方用电。另外,许多生产部门用电进行控制,容易实现自动化,提高产品质量和经济效益。由此可见,电力工业在国民经济中占有十分重要的地位,而且电力必须先行,才能满足工农业发展的需要。我国目前电力工业开发的方针是:积极发展火电。火电应立足于煤碳资源发电,我国今后相当长的时间内,火电仍为主要能源。大力开发水电。因水能是一种再生能源,水资源不但可以发电,还可与航运、灌溉、防洪、水产等进行综合利用。我国水电资源主要集中在西南和西北地区。它的发电成本低,但大型工程投资大,建设周期长。有重点有步骤地建设核电厂。在自然能源缺乏的缺电地区建设核电厂,可改善能源平衡。发展联合电力系统。由于系统容量不断增大,应采用超高压远距离输电和直流输电,并逐步形成跨区的联合电力系统,以提高供电可靠性和经济性。开发多种发电能源。可根据当地条件,因地制宜、由地方和群众兴办小水电、火电、风力发电和地热发电等。我国电力工业自动化水平正在逐年提高,大部分电厂实现了集中控制和采用计算机控制,电网也实现了分级集中调度。我国电力工业将跨入世界先进水平行列。1.2 变电站技术的发展我国电力建设经过多年的发展,系统容量越来越大,短路电流不断增大,对电气设备、系统内大量信息的实时性等要求越来越高;而随着科学技术的高速发展,制造、材料行业,尤其是计算机及网络技术的迅速发展,电力系统的变电技术也有了新的飞跃,我国变电站设计出现了一些新的趋势。l、变电站接线方案趋于简单随着制造厂生产的电气设备质量的提高以及电网可靠性的增加,变电站接线简化趋于可能。例如,断路器是变电站的主要电气设备,其制造技术近年来有了较大发展,可靠性大为提高,检修时间少。近期国内新建的许多变电站220 k V及110kV电压等级的接线采用双母线而不带旁路母线。采用GIS的情况下,优先采用单母线分段接线。终端变电站中,尽量采用线路变压器组接线等。2、大量采用新的电气一次设备近年来电气一次设备制造有了较大发展,大量高性能、新型设备不断出现,设备趋于无油化,采用SF6气体绝缘的设备价格不断下降,伴随着国产GIS向高电压、大容量、三相共箱体方面发展,性能不断完善,应用面不断扩大,许多城网建设工程、用户工程都考虑采用GIS配电装置。变电站设计的电气设备档次不断提高,配电装置也从传统的形式走向无油化、真空开关、SF6开关和机、电组合一体化的小型设备发展。3、变电站综合自动化技术新动向变电站综合自动化系统近几年一直是电力建设的一个热点。无论国内国外,还是从管理方、运行方及设计单位对于变电站实现综合自动化均取得了共识。伴随着计算机技术、网络技术和通信技术的发展,变电站综合自动化也采用了新的技术,其技术动向主要集中在以下两个方面。(1)全分散式变电站自动化系统,新型的全分散式变电站自动化系统,设计思想上实现了变电站二次系统由“面向功能”设计向“面向对象”设计的重要转变。系统不再单纯考虑某一个量,而是为某一设备配置完备的保护、监控和测量功能装置,以完成特定的功能,从而并保证了系统的分布式开放性。其特点是各现场输入输出单元部件分别安装在中低压开关柜或高压一次设备附近,现场单元部件可以是保护、监控和测量功能的集成装置,亦可以是现场的保护、监控和测量部件分别保持其独立性。变电站遥测遥信采集及处理、遥控命令执行和继电保护功能等均由现场单元部件独立完成,并将这些信息通过网络送至后台主计算机。(2)引入先进的网络技术,通信网络是综合自动化变电站与常规站的最明显的区别之一,只有采用通信网络,才可能节省大量电缆。因此必须保证通信网络安全、可靠,传输速度满足变电站综合自动化系统的要求。全分散式变电站自动化系统的实现尤其依托于如今发展很快的计算机网络技术。引入先进的网络技术使得自动化系统的实现更加简单,性能也大大优于以往的系统,并可解决以往系统中链路信息传输的实时性问题,以及信号传输的容量问题。4、变电站占地及建筑面积减少变电站接线方案的简化,组合电器、管母线及钢支架等的采用,使变电站布置更为简单,取消站前区和优化布置使变电站占地大幅度下降。据有关资料介绍,采用GIS的配电装置和敞开式配电装置相比可节省占地80以上。采用PASS的配电装置和敞开式配电装置相比可节省占地4060。即使同样敞开式配电装置,由于简化接线(比如取消旁路母线等)也会减少变电站占地面积。 配合我国经济建设的迅速发展,搞好电网建设尤为重要。其中,变电站设计是电网建设的一个重要环节。研究和分析国内外变电站技术的发展,把握其趋势,对变电站设计是很有必要的。1.3 110kV变电站发展现状110kV变电站从六十年代开始逐渐走入普通的地级市,由于当时负荷水平低,电力建设投资少,城市电网结构简单。当时国内绝大部分城市还辅以35kV变电站构成高压输电网络。进入八十年代以来,我国经济进入前所未有的高速发展阶段。经济建设对电力事业提出更高要求的同时也促进了电力事业的发展。这段时期建设的110kV变电站l10kV电气设备多采用常规设备户外敞开式布置;变电站主接线较为复杂,例如为单母线分段带旁路;电气设备为多油或少油设备;主变容量大多选择315MVA或40MVA。这种模式的变电站占地面积大,设备繁多,设备安全可靠性较低,日常维护工作量大。进入九十年代中期,供电紧张的情况得到好转,电网设计和建设越来越强调供电可靠性。人们开始把注意力转向性能好、质量高、检修周期长或多年不需检修等特点的电气设备。实施“四遥”功能,实现变电站无人值班已成为可能。这段时期,110kV电气设备出现了GIS设备、COMPASS设备等;电气布置形式也出现了半户内布置、全户内布置等形式;二次设备系统也有简单的“四遥”系统和变电站综合自动化系统。由于采用了先进可靠的设备,这段时期建设的l 10kV变电站主结线较为简洁。除主变外l10kV电气设备多采用户内布置的形式,主变容量多为40MVA或50MVA,开关设备为无油设备,变电站具备无人值班的功能。这些变电站占地面积小,自动化程度高,日常维护工作量小,安全可靠性高。1.4 变电站设计的基本要求变电站和其他工程设计一样,包括设计、施工、运行三步。设计是第一步,且工作责任大,因此,必须严格遵守以下要求:必须严格遵守国家标准,认真执行国家的技术经济政策,并应做到保障人身和设备的安全,供电可靠,电能质量合格积极采用新技术,提高自动化水平,尽量结合具体情况做定型设计,做到工程技术先进、经济合理、安全使用,确保设计质量。根据规划进行设计,必要时可分期建设,做到远、近期结合,以近期为主,适当考虑工程扩建发展的可能。从生产实际出发,树立设计、施工、运行的整体观念,防止绝对化。必须从全局考虑,统筹兼顾,按照负荷性质、用电容量、工程特点和本地区供电条件,合理确定设计方案,满足供电可靠性的要求。电力工程设计人员应坚持到现场调查,收集有关资料,使设计和施工、运行检修相结合,理论和实际相统一。1.5 本课题的研究内容本课题设计一个典型的110kV变电站,主要是设计其一次系统,包括以下主要工作:(1)变电站主接线的方案设计(2)变电站一次设备的选择与校验(3)变电站防雷与接地系统设计(4)变电站的选址与布置(5)变电站所用电系统的设计(6)变电站保护的设计第2章 电气主接线选择2.1 概述主接线是变电所电气设计的首要部分,它是由高压电器设备通过连接线组成的接受和分配电能的电路,也是构成电力系统的重要环节。主接线的确定对电力系统整体及变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置、继电保护和控制方式的拟定有较大影响。因此,必须正确处理好各方面的关系。我国变电所设计技术规程SDJ2-79规定:变电所的主接线应根据变电所在电力系统中的地位、回路数、设备特点及负荷性质等条件确定,并且满足运行可靠,简单灵活、操作方便和节约投资等要求,便于扩建。一、可靠性:安全可靠是电力生产的首要任务,保证供电可靠和电能质量是对主接线最基本要求,而且也是电力生产和分配的首要要求。主接线可靠性的具体要求:(1)断路器检修时,不宜影响对系统的供电;(2)断路器或母线故障以及母线检修时,尽量减少停运的回路数和停运时间,并要求保证对一级负荷全部和大部分二级负荷的供电;(3)尽量避免变电所全部停运的可靠性。二、灵活性:主接线应满足在调度、检修及扩建时的灵活性。(1)为了调度的目的,可以灵活地操作,投入或切除某些变压器及线路,调配电源和负荷能够满足系统在事故运行方式,检修方式以及特殊运行方式下的调度要求;(2)为了检修的目的:可以方便地停运断路器,母线及继电保护设备,进行安全检修,而不致影响电力网的运行或停止对用户的供电;(3)为了扩建的目的:可以容易地从初期过渡到其最终接线,使在扩建过渡时,无论在一次和二次设备装置等所需的改造为最小。三、经济性:主接线在满足可靠性、灵活性要求的前提下做到经济合理。(1)投资省:主接线应简单清晰,以节约断路器、隔离开关、电流和电压互感器、避雷器等一次设备的投资,要能使控制保护不过复杂,以利于运行并节约二次设备和控制电缆投资;要能限制短路电流,以便选择价格合理的电气设备或轻型电器;在终端或分支变电所推广采用质量可靠的简单电器;(2)占地面积小,主接线要为配电装置布置创造条件,以节约用地和节省构架、导线、绝缘子及安装费用。在不受运输条件许可,都采用三相变压器,以简化布置。(3)电能损失少:经济合理地选择主变压器的型式、容量和数量,避免两次变压而增加电能损失。2.2 主接线的接线方式选择电气主接线是根据电力系统和变电所具体条件确定的,它以电源和出线为主体,在进出线路多时(一般超过四回)为便于电能的汇集和分配,常设置母线作为中间环节,使接线简单清晰、运行方便,有利于安装和扩建。而本所各电压等级进出线均超过四回,采用有母线连接。1、单母线接线单母线接线虽然接线简单清晰、设备少、操作方便,便于扩建和采用成套配电装置等优点,但是不够灵活可靠,任一元件(母线及母线隔离开关)等故障或检修时,均需使整个配电装置停电。单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后,才能恢复非故障段的供电,并且电压等级越高,所接的回路数越少,一般只适用于一台主变压器。单母接线适用于:110200kV配电装置的出线回路数不超过两回,3563kV,配电装置的出线回路数不超过3回,610kV配电装置的出线回路数不超过5回,才采用单母线接线方式,故不选择单母接线。2、单母分段用断路器,把母线分段后,对重要用户可以从不同段引出两个回路;有两个电源供电。当一段母线发生故障,分段断路器自动将故障切除,保证正常段母线不间断供电和不致使重要用户停电。但是,一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电,而出线为双回时,常使架空线路出现交叉跨越,扩建时需向两个方向均衡扩建,单母分段适用于:110220kV配电装置的出线回路数为34回,3563kV配电装置的出线回路数为48回,610kV配电装置出线为6回及以上,则采用单母分段接线。3、单母分段带旁路母线这种接线方式:适用于进出线不多、容量不大的中小型电压等级为35110kV的变电所较为实用,具有足够的可靠性和灵活性。4、桥形接线当只有两台变压器和两条输电线路时,采用桥式接线,所用断路器数目最少,它可分为内桥和外桥接线。内桥接线:适合于输电线路较长,故障机率较多而变压器又不需经常切除时,采用内桥式接线。当变压器故障时,需停相应的线路。外桥接线:适合于出线较短,且变压器随经济运行的要求需经常切换,或系统有穿越功率,较为适宜。为检修断路器LD,不致引起系统开环,有时增设并联旁路隔离开关以供检修LD时使用。当线路故障时需停相应的变压器。所以,桥式接线,可靠性较差,虽然它有:使用断路器少、布置简单、造价低等优点,但是一般系统把具有良好的可靠性放在首位,故不选用桥式接线。5、一个半断路器(3/2)接线两个元件引线用三台断路器接往两组母上组成一个半断路器,它具有较高的供电可靠性和运行灵活性,任一母线故障或检修均不致停电,但是它使用的设备较多,占地面积较大,增加了二次控制回路的接线和继电保护的复杂性,且投资大。6、双母接线它具有供电可靠、调度灵活、扩建方便等优点,而且,检修另一母线时,不会停止对用户连续供电。如果需要检修某线路的断路器时,不装设“跨条”,则该回路在检修期需要停电。对于,110220kV输送功率较多,送电距离较远,其断路器或母线检修时,需要停电,而断路器检修时间较长,停电影响较大,一般规程规定,110220kV双母线接线的配电装置中,当出线回路数达7回,(110kV)或5回(220kV)时,一般应装设专用旁路母线。7、双母线分段接线双母线分段,可以分段运行,系统构成方式的自由度大,两个元件可完全分别接到不同的母线上,对大容量且在需相互联系的系统是有利的,由于这种母线接线方式是常用传统技术的一种延伸,因此在继电保护方式和操作运行方面都不会发生问题。而较容易实现分阶段的扩建等优点,但是易受到母线故障的影响,断路器检修时要停运线路,占地面积较大,一般当连接的进出线回路数在11回及以下时,母线不分段。为了保证双母线的配电装置,在进出线断路器检修时(包括其保护装置和检修及调试),不中断对用户的供电,可增设旁路母线,或旁路断路器。2.3 110kV侧主接线设计这里主要介绍有汇流母线接线中的单母线接线、单母分段接线和无汇流母线的桥型接线。单母线接线具有简单清晰、设备少、投资小、运行操作方,且有利于扩建等优点。但可靠性、灵活性较差,这种接线只适用于6-220kV系统中只有一台发电机或一台主变压器,且出线回路数又不多的中、小型发电厂或变电所,它不能满足一、二类用户的要求。单母分段接线对重要用户可以从不同段引出两回馈线回路,由两个电源供电,当一段母线发生故障,分段断路器自动将故障段隔离,保证正常段母线不间断供电,不致使重要用户停电。这种接线广泛用于中小容量发电厂的6-10kV接线和6-220kV变电所中。桥型接线的特点:一般当只有两台变压器和两条输电线路时,采用桥型接线。高压断路器数量少,是比较经济的接线,四个元件只需要三台断路器,线路的投入和切除操作方便,线路故障是仅将故障线路断路器断开,其它线路和变压器不受影响。考虑到本变电站的远期发展,故采用单母线分段接线。2.4 10kV接线设计10kV侧出线有十回,按照规程规定:单母分段既具有单母接线简单经济方便的优点,又在一定程度上克服了它的缺点,对重要用户从不同段引出两个回路,使重要用户有两个电源,提高了供电可靠性,220kV及以下变电所供应当地的6-10kV配电装置,由于采用了制造厂制造的成套开关柜,地区电网成环网运行检修水平的迅速提高,采用单母分段一般能满足要求。因此,本变电站10kV侧主接线采用单母线分段形式。2.5 主接线图见附件110kV变电站电气主接线图第3章 主变压器的选择3.1 概述在各级电压等级的变电所中,变压器是变电所中的主要电气设备之一,其担任着向用户输送功率,或者两种电压等级之间交换功率的重要任务,同时兼顾电力系统负荷增长情况,并根据电力系统510年发展规划综合分析,合理选择,否则,将造成经济技术上的不合理。如果主变压器容量造的过大,台数过多,不仅增加投资,扩大占地面积,而且会增加损耗,给运行和检修带来不便,设备亦未能充分发挥效益;若容量选得过小,可能使变压器长期在过负荷中运行,影响主变压器的寿命和电力系统的稳定性。因此,确定合理的变压器的容量是变电所安全可靠供电和网络经济运行的保证。在生产上电力变压器制成有单相、三相、双绕组、三绕组、自耦以及分裂变压器等,在选择主变压器时,要根据原始资料和设计变电所的自身特点,在满足可靠性的前提下,要考虑到经济性来选择主变压器。选择主变压器的容量,同时要考虑到该变电所以后的扩建情况来选择主变压器的台数及容量。3.2 主变压器容量的选择主变容量一般按变电所建成近期负荷,510年规划负荷选择,并适当考虑远期1020年的负荷发展,对于城郊变电所主变压器容量应当与城市规划相结合,该所近期和远期负荷都给定,所以应按近期和远期总负荷来选择主变的容量,根据变电所带负荷的性质和电网结构来确定主变压器的容量,对于有重要负荷的变电所,应考虑当一台变压器停运时,其余变压器容量在过负荷能力后允许时间内,应保证用户的一级和二级负荷,对一般性能的变电所,当一台主变压器停运时,其余变压器容量应保证全部负荷的70%80%。该变电所是按70%全部负荷来选择。因此,装设两台变压器变电所的总装容量为:se = 2(0.7PM) = 1.4PM。 当一台变压器停运时,可保证对60%负荷的供电,考虑变压器的事故过负荷能力为40%,则可保证98%负荷供电,而高压侧110kV母线的负荷不需要通过主变倒送,因为,该变电所的电源引进线是110kV侧引进。其中,低压侧全部负荷需经主变压器传输至各母线上。因此主变压器的容量应选择为:Se = 0.7S。由原始资料可知,选择容量为31.5MVA变压器。3.3 主变压器台数的选择由原始资料可知,我们本次所设计的变电所是110kV降压变电所,它是以110kV受功率为主。把所受的功率通过主变传输至10kV母线上。若全所停电后,将引起下一级变电所与地区电网瓦解,影响整个市区的供电,因此选择主变台数时,要确保供电的可靠性。为了保证供电可靠性,避免一台主变压器故障或检修时影响供电,变电所中一般装设两台主变压器。当装设三台及三台以上时,变电所的可靠性虽然有所提高,但接线网络较复杂,且投资增大,同时增大了占用面积,和配电设备及用电保护的复杂性,以及带来维护和倒闸操作等许多复杂化。而且会造成中压侧短路容量过大,不宜选择轻型设备。考虑到两台主变同时发生故障机率较小。适用远期负荷的增长以及扩建,而当一台主变压器故障或者检修时,另一台主变压器可承担70%的负荷保证全变电所的正常供电。故选择两台主变压器互为备用,提高供电的可靠性。3.4 主变压器型式的选择一、主变压器相数的选择当不受运输条件限制时,在330kV以下的变电所均应选择三相变压器。而选择主变压器的相数时,应根据原始资料以及设计变电所的实际情况来选择。单相变压器组,相对来讲投资大,占地多,运行损耗大,同时配电装置以及断电保护和二次接线的复杂化,也增加了维护及倒闸操作的工作量。本次设计的变电所,位于市郊区,稻田、丘陵,交通便利,不受运输的条件限制,而应尽量少占用稻田、丘陵,故本次设计的变电所选用三相变压器。二、绕组数的选择在具有三种电压等级的变电所,如通过主变压器的各侧绕组的功率均达到该变压器容量的15%以上,或低压侧虽无负荷,但在变电所内需装设无功补偿设备,主变宜采用三绕组变压器。一台三绕组变压器的价格及所用的控制和辅助设备,比相对的两台双绕组变压器都较少,而且本次所设计的变电所具有三种电压等级,考虑到运行维护和操作的工作量及占地面积等因素,该所选择三绕组变压器。在生产及制造中三绕组变压器有:自耦变、分裂变以及普通三绕组变压器。自耦变压器:它的短路阻抗较小,系统发生短路时,短路电流增大,以及干扰继电保护和通讯,并且它的最大传输功率受到串联绕组容量限制,自耦变压器,具有磁的联系外,还有电的联系,所以,当高压侧发生过电压时,它有可能通过串联绕组进入公共绕组,使其它绝缘受到危害,如果在中压侧电网发生过电压波时,它同样进入串联绕组,产生很高的感应过电压。由于自耦变压器高压侧与中压侧有电的联系,有共同的接地中性点,并直接接地。因此自耦变压器的零序保护的装设与普通变压器不同。自耦变压器,高中压侧的零序电流保护,应接于各侧套管电流互感器组成零序电流过滤器上。由于本次所设计的变电所所需装设两台变压器并列运行。电网电压波动范围较大,如果选择自耦变压器,其两台自耦变压器的高、中压侧都需直接接地,这样就会影响调度的灵活性和零序保护的可靠性。而自耦变压器的变化较小,由原始资料可知,该所的电压波动为±8%,故不选择自耦变压器。分裂变压器:分裂变压器约比同容量的普通变压器贵20%,分裂变压器,虽然它的短路阻抗较大,当低压侧绕组产生接地故障时,很大的电流向一侧绕组流去,在分裂变压器铁芯中失去磁势平衡,在轴向上产生巨大的短路机械应力。分裂变压器中对两端低压母线供电时,如果两端负荷不相等,两端母线上的电压也不相等,损耗也就增大,所以分裂变压器适用两端供电负荷均衡,又需限制短路电流的供电系统。由于本次所设计的变电所,受功率端的负荷大小不等,而且电压波动范围大,故不选择分裂变压器。普通三绕组变压器:价格上在自耦变压器和分裂变压器中间,安装以及调试灵活,满足各种继电保护的需求。又能满足调度的灵活性,它还分为无激磁调压和有载调压两种,这样它能满足各个系统中的电压波动。它的供电可靠性也高。所以,本次设计的变电所,选择普通三绕组变压器。三、连接组别的选择我国110kV级以上的电压变压器绕组都采用“Y”连接,35kV及以下电压等级,变压器都采用“Y-”连接,故选择YN,D11连接。3.5 主变压器其它参数综合以上,我选择的变压器型号为 SFL1-31500/110 两台短路损耗: =190kW 空载损耗: =31.5kW短路电压: %=10.5 空载电流: %=0.7第4章 短路计算4.1 概述在电力系的电气设备,在其运行中都必须考虑到可能发生的各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种型式的短路,因为它们会遭到破坏对用户的正常供电和电气设备的正常运行。短路是电力系统的严重故障,所谓短路,是指一切不正常的相与相之间或相与地(对于中性点接地系统)发生通路的情况。在三相系统中,可能发生的短路有:三相短路,两相短路,两相接地短路和单相接地短路。其中,三相短路是对称短路,系统各相与正常运行时一样仍处于对称状态,其他类型的短路都是不对称短路。电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路的机会最少。但三相短路虽然很少发生,其情况较严重,应给以足够的重视。因此,我们都采用三相短路来计算短路电流,并检验电气设备的稳定性。4.2 短路计算的目的和假设4.2.1 短路电流计算的目的(1)为了选择断路器等电器设备或对这些设备提出技术要求;(2)评价并确定网络方案;(3)研究限制短路电流的措施;(4)为继电保护整定和调试提供数据;(5)分析计算送电线路对通讯设施的影响。在电力系统设计中,短路电流的计算应按照远景规划水平考虑,远景规划水平一般按建成后5-10年。计算内容为系统在最大运行方式时各枢纽点的三相短路电流。工程设计中,短路电流计算均采用实用计算法。所谓实用计算法是指在一定的假设条件下计算出短路电流的各个分量,而不是用微分方程求解短路电流的完整表达式。4.2.2 短路电流计算的一般规定1)验算导体和电器动稳定、热稳定以及电器开断电流所用的短路电流,应按工程的设计规划容量计算,并考虑电力系统的远景发展规划(一般为本期工程建成后510年)。确定短路电流计算时,应按可能发生最大短路电流的正常接线方式,而不应按仅在切换过程中可能并列运行的接线方式。2)选择导体和电器用的短路电流,在电气连接的网络中,应考虑具有反馈作用的异步电机的影响和电容补偿装置放电电流的影响。3)选择导体和电器时,对不带电抗器回路的计算短路点,应按选择在正常接线方式时短路电流为最大的地点。4)导体和电器的动稳定、热稳定以及电器的开断电流一般按三相短路验算。4.2.3 计算的假设条件(1)故障前为空载,即负荷略去不计,只计算短路电流的故障分量;(2)故障前所有电压均等于平均额定电压,其标幺值等于1;(3)系统各个元件电阻略去不计(1kV及以上的高压电网);(4)只计算短路电流的基频分量。4.2.4 短路电流的计算步骤(1)短路电流计算的基准值(2)计算各元件参数的标幺值,做出等值电路;(3)进行网络简化,求出电源点与短路点之间的电抗,此电抗称为入端电抗;(4)求出短路电流标幺值,进而求出短路电流有名值;(5)计算冲击电流有效值。4.3 具体计算选取基准容量=100MVA基准电压=115kV =10.5kV基准电流 系统变压器=0.33短路容量 1000MVA等值网络图见图4-1:图4-1 短路等值电路图4.3.1 短路计算点d1(110kV母线短路)三相短路电流为:=5.02kA三相短路次稳态电流及短路稳态电流为:三相短路冲击电流的瞬时值为:=12.80kA三相短路冲击电流的有效值为:=7.63kA4.3.2 短路计算点d2(10kV母线短路)最大运行情况下(两台变压器同时运行): + 三相短路电流为:=3.775.50kA=20.74kA三相短路次稳态电流及短路稳态电流为:三相短路冲击电流的瞬时值为:=52.89kA三相短路冲击电流的有效值为:=31.52kA最小运行情况下(只有一台变压器单独运行): + 三相短路电流为:=2.335.50kA=12.82kA三相短路次稳态电流及短路稳态电流为: 三相短路冲击电流的瞬时值为: =32.70kA三相短路冲击电流的有效值为: =19.49kA变压器额定数据: 高压侧:额定电压: 额定电流: A 低压侧:额定电压: 额定电流: A4.4 短路电流计算结果见表4-1:表4-1 短路计算结果短路计算项目基 值电 压(kV)基 值 电 流(kV)计 算电 抗标 幺值短 路电 流周 期分 量稳 态短 路电 流短路电流冲击值(kA)全电流最大有效值(kA)短路容量(MVA) 公式短路点编号标幺值有名值(kA)有名值(kA)d1最大运行 方式1150.500.1105.025.0212.807.631000d2最大运行 方式10.55.500.2653.77420.7420.7452.8931.52377最小运行 方式10.55.500.432.3312.8212.8232.7019.49233第5章 一次设备的选择与校验5.1 电气设备选择的基本条件5.1.1 电气设备选择的一般原则(1)应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展;(2)应按当地环境条件校核;(3)应力求技术先进和经济合理;(4)与整个工程的建设标准应协调一致;(5)同类设备应尽量减少品种;(6)选用的新产品均应有可靠的试验数据,并经正式鉴定合格。在特殊情况下,选用未经正式鉴定的新产品时,应经上级批准。5.1.2 电气设备选择的技术条件选择的高压电器,应能在长期工作和发生过电压、过电流的情况下保持正常运行。5.1.3 工作条件(1)电压电器额定电压不于长期工作电压(2)电流电器额定电流不低于计算电流5.1.4 短路稳定条件(1)校验的一般原则1)电器在选定后应按最大可能通过的短路电流进行动、热稳定校验。校验的短路电流一般取三相短路时的短路电流,若发电机出口的两相短路,或中性点直接接地系统及自耦变压器等回路中的单相、两相接地短路较三相短路严重时,则应按严重情况校验。2)用熔断器保护的电器可不验算热稳定。当熔断器有限流作用时,可不验算动稳定。用熔断器保护的电压互感器回路,可不验算动、热稳定。(2)短路的热稳定稳定条件校验短路热稳定所用的计算时间按下式计算:=+式中:路计算时间 :动作时间 :路器固有分闸时间 对于快速及中速断路器,取=0.15s 热稳定校验满足条件为: =+0.05式中:设备给定的热稳定电流 t:设备给定的热稳定时间 :短路电流的次暂态值 :短路电流的假象时间(3)动稳定性校验动稳定满足条件为:式中:三相短路电流冲击值 :断路器极限通过电流峰值5.1.5 绝缘水平在工作电压和过电压的作用下,电器的内、外绝缘应保证必要的可靠性。电器的绝缘水平,应按电网中出现的各种过电压和保护设备相应的保护水平来确定。当所选电器的绝缘水平低于国家规定的标准数值时,应通过绝缘配合计算,选用适当的过电压保护设备。5.1.6 环境条件(1)日照屋外高压电器在日照影响下将产生附加温升。但高压电器的发热试验是在避免阳光直射的条件下进行的。如果制造部门未能提出产品在日照下额定载流量下降的数据,在设计中可暂按电器额定电流的80%选择设备。在进行试验或计算时,日照强度取0.1W/,风速取0.5m/s。(2)风速一般高压电器可在风速不大于35 m/s的环境下使用。选择电器时所用的最大风速,可取离地10 m高、30年一遇的10min平均最大风速。最大风速超过35 m/s的地区,可在屋外配电装置的布置中采取措施。(3)冰雪在积雪和覆冰严重的地区,应采取措施防止冰串引起瓷件绝缘对地闪络。隔离开关的破冰厚度一般为10mm。(4)湿度选择电器的湿度,应采用当地相对湿度最高月份的平均相对湿度(相对湿度在一定温度下,空气中实际水汽压强值与饱和水汽压强值之比;最高月份的平均相对湿度该月中日最大相对湿度值的月平均值)。一般高压电器可使用在+20,相对湿度为90%的环境中(电流互感器为85%)。(5)污秽污秽地区内各种污物对电气设备的危害,取决于污秽物质的导电性、吸水性、附着力、数量、比重及距物源的距离和气象条件。在工程设计中,应根据污秽情况选用下列措施:1)增大电瓷外绝缘的有效泄漏比距或选用有利于防污的电瓷造型,如采用半导体、大小伞、大倾角、钟罩式等特制绝缘子。2)采用屋内配电装置。2级及以上污秽区的63110kV配电装置采用屋内型。(6)海拔电器的一般使用条件为海拔高度不超过1000m。海拔超过1000m的地