EViews计量经济学实验报告-多重共线性的诊断与修正(共11页).doc
-
资源ID:14165675
资源大小:473.50KB
全文页数:11页
- 资源格式: DOC
下载积分:20金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
EViews计量经济学实验报告-多重共线性的诊断与修正(共11页).doc
精选优质文档-倾情为你奉上时间 地点 实验题目 多重共线性的诊断与修正 一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断; 2、对多元线性回归模型的多重共线性的修正。二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,19782007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV软件,做回归分析,判断是否存在多重共线性,以及修正。三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。研究“农业的发展反而会减少财政收入”这个问题。设定如下形式的计量经济模型:=+其中,为财政收入CS/亿元;为农业增加值NZ/亿元;为工业增加值GZ/亿元;为建筑业增加值JZZ/亿元;为总人口TPOP/万人;为最终消费CUM/亿元;为受灾面积SZM/千公顷。图1: 19782007年财政收入及其影响因素数据年份财政收入CS/亿元农业增加值NZ/亿元工业增加值GZ/亿元建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷19781132.31027.51607138.2962592239.15079019791146.41270.21769.7143.8975422633.73937019801159.91371.61996.5195.5987053007.94452619811175.81559.52048.4207.13361.53979019821212.31777.42162.3220.73714.833130198313671978.42375.6270.64126.43471019841642.92316.12789316.74846.33189019852004.82564.43448.7417.95986.344365198621222788.73967525.76821.84714019872199.432334585.8665.87804.64209019882357.23865.45777.28109839.55087019892664.94265.9648479411164.24699119902937.150626858859.412090.53847419913149.485342.28087.11015.114091.95547219923483.375866.610284.5141517203.35133319934348.956963.8141882266.521899.94882919945218.19572.719480.72964.729242.25504319956242.212135.824950.63728.836748.24582119967407.9914015.429447.64387.443919.54698919978651.1414441.932921.44621.648140.65342919989875.9514817.634018.44985.851588.250145199911444.081477035861.55172.155636.949981200013395.2314944.7400365522.36151654688200116386.0415781.343580.65931.766878.352215200218903.641653747431.36465.571691.247119200321715.2517381.754945.57490.877449.554506200426396.4721412.7652108694.387032.937106200531649.292242076912.910133.896918.138818200638760.22404091310.911851.1.341091200751321.7828095.214014.1.648992利用EV软件,生成、等数据,采用这些数据对模型进行OLS回归。(二)诊断多重共线性1、双击“Eviews”,进入主页。输入数据:点击主菜单中的File/Open /EV WorkfileExcel多重共线性的数据.xls ;2、在EV主页界面的窗口,输入“ls y c x2 x3 x4 x5 x6 x7”,按“Enter”.出现OLS回归结果,图2: 图2: OLS 回归结果Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:07Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-6646.6946454.156-1.0.3138X2-0.0.-2.0.0074X31.0.4.0.0001X4-2.2.-1.0.1963X50.0.1.0.2653X6-0.0.-0.0.5688X70.0.0.0.8306R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1041.849 Akaike info criterion16.93634Sum squared resid Schwarz criterion17.26329Log likelihood-247.0452 F-statistic701.4747Durbin-Watson stat2. Prob(F-statistic)0.由此可见,该模型的可决系数为0.995,修正的可决系数为0.993,模型拟和很好,F统计量为701.47,模型拟和很好,回归方程整体上显著。但是当=0.05时,=2.069,不仅X4、X5、X6、X7的系数t检验不显著,而且X2、X4、X6系数的符号与预期相反,这表明很可能存在严重的多重共线性。(即除了农业增加值、工业增加值外,其他因素对财政收入的影响都不显著,且农业增加值、建筑业增加值、最终消费的回归系数还是负数,这说明很可能存在严重的多重共线性。)3、计算各解释变量的相关系数:在Workfile窗口,选择X2、X3、X4、X5、X6、X7数据,点击“Quick”Group StatisticsCorrelationsOK,出现相关系数矩阵,如图3:图3: 相关系数矩阵X2X3X4X5X6X7X210.1470.97890.67450.46670.2465X30.14710.31880.87580.17840.6215X40.97890.318810.80510.15960.4353X50.67450.87580.805110.69790.8787X60.46670.17840.15960.697910.1582X70.24650.62150.43530.87870.15821由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,特别是农业增加值、工业增加值、建筑业增加值、最终消费之间,相关系数都在0.8以上。这表明模型存在着多重共线性。(三)修正多重共线性1、采用逐步回归法,去检验和解决多重共线性问题。分别作Y对X2、X3、X4、X5、X6、X7的一元回归,结果如下图4:在EV主页界面的窗口,输入“ls y c x2”,“回车键”。Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:49Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-4086.5441463.091-2.0.0093X21.0.12.403980.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression5025.770 Akaike info criterion19.94689Sum squared resid7.07E+08 Schwarz criterion20.04030Log likelihood-297.2033 F-statistic153.8588Durbin-Watson stat0. Prob(F-statistic)0.依次如上推出X3、X4、X5、X6、X7的一元回归。综上所述,结果如下图4:图4.一元回归估计结果变量参数估计值1.0.3.0.0.0.t统计量12.4039828.9016822.677336.18.128950.0.0.0.0.0.0.0.0.0.0.0.-0.2、其中,加入的最大,以为基础,顺次加入其他变量逐步回归。结果如下图5:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C1976.086388.24135.0.0000X2-1.0.-10.504860.0000X30.0.25.000560.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1041.474 Akaike info criterion16.82930Sum squared resid Schwarz criterion16.96942Log likelihood-249.4395 F-statistic2103.946Durbin-Watson stat1. Prob(F-statistic)0.依照上面,在顺次加入X4、X5、X6、X7,进行逐步回归。综合结果如下图5:图5.加入新变量的回归结果(一)变量X2X3X4X5X6X7X3,X2-1.0.0.(-10.50486)(25.00056)X3,X41.65227-9.0.(11.46367)(-8.)X3,X50.-0.0.98301(26.29703)(-5.)X3,X60.-0.0.(11.18199)(-5.)X3,X70.-0.0.(30.62427)(-2.)经比较,新加入的方程= 0. ,改进最大, 但是得系数为负,这显然不符题意。在的基础上分别加入其他变量后发现,的系数都为负,与预期估计违背。因此这些变量都会引起严重的多重共线性,全部剔除,只保留。修正的回归结果为:Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-1075.289570.5337-1.0.0699X30.0.28.901680.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression2306.678 Akaike info criterion18.38935Sum squared resid1.49E+08 Schwarz criterion18.48276Log likelihood-273.8402 F-statistic835.3074Durbin-Watson stat0. Prob(F-statistic)0.= -1075.289 + 0.(-1.) (28.90168)= 0. =0. F=835.3074这说明在其他因素不变的情况下,工业增加值每增加1亿元,财政收入平均增加0.亿元。四、实践结果报告: 为研究“农业的发展反而会减少财政收入”的问题,根据19782007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV软件,做回归分析,判断是否存在多重共线性,以及修正。最后修正的回归结果为:= -1075.289 + 0.(-1.) (28.90168)= 0. =0. F=835.3074这说明在其他因素不变的情况下,工业增加值每增加1亿元,财政收入平均增加0.亿元。可决系数为0.,较高,说明模型拟合优度高;F值为835.3074,说明整个方程显著;斜率系数的t值28.90168,大于t统计量,t检验显著,符合题意。逐步回归后的结果虽然实现了减轻多重共线性的目的,但反映农业增加值,建筑业增加值的X2,X3等也一并从模型中剔除出去了,可能会带来设定偏误,这是在使用逐步回归时需要注意的问题。附加:1、 分别作Y对X2、X3、X4、X5、X6、X7的一元回归,结果如下:ls y c x2Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:49Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-4086.5441463.091-2.0.0093X21.0.12.403980.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression5025.770 Akaike info criterion19.94689Sum squared resid7.07E+08 Schwarz criterion20.04030Log likelihood-297.2033 F-statistic153.8588Durbin-Watson stat0. Prob(F-statistic)0.ls y c x3Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-1075.289570.5337-1.0.0699X30.0.28.901680.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression2306.678 Akaike info criterion18.38935Sum squared resid1.49E+08 Schwarz criterion18.48276Log likelihood-273.8402 F-statistic835.3074Durbin-Watson stat0. Prob(F-statistic)0.ls y c x4Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:50Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-1235.177727.9896-1.0.1008X43.0.22.677330.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression2910.486 Akaike info criterion18.85437Sum squared resid2.37E+08 Schwarz criterion18.94778Log likelihood-280.8155 F-statistic514.2614Durbin-Watson stat0. Prob(F-statistic)0.ls y c x5 Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:51Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-86420.4215618.35-5.0.0000X50.0.6.0.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression8310.188 Akaike info criterion20.95269Sum squared resid1.93E+09 Schwarz criterion21.04611Log likelihood-312.2904 F-statistic38.51474Durbin-Watson stat0. Prob(F-statistic)0.ls y c x6Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 17:51Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-2026.867934.3495-2.0.0387X60.0.18.128950.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression3588.750 Akaike info criterion19.27334Sum squared resid3.61E+08 Schwarz criterion19.36675Log likelihood-287.1000 F-statistic328.6589Durbin-Watson stat0. Prob(F-statistic)0.ls y c x7Dependent Variable: YMethod: Least SquaresDate: 10/12/10 Time: 18:36Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C4934.61616135.440.0.7620X70.0.0.0.7511R-squared0. Mean dependent var10049.04Adjusted R-squared-0. S.D. dependent var12585.51S.E. of regression12784.87 Akaike info criterion21.81425Sum squared resid4.58E+09 Schwarz criterion21.90767Log likelihood-325.2138 F-statistic0.Durbin-Watson stat0. Prob(F-statistic)0.2、 以为基础,顺次加入其他变量逐步回归。X3、X2:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C1976.086388.24135.0.0000X2-1.0.-10.504860.0000X30.0.25.000560.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1041.474 Akaike info criterion16.82930Sum squared resid Schwarz criterion16.96942Log likelihood-249.4395 F-statistic2103.946Durbin-Watson stat1. Prob(F-statistic)0.X3、X4:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:27Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C-241.4297318.0985-0.0.4544X31.0.11.463670.0000X4-9.1.-8.0.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1223.617 Akaike info criterion17.15165Sum squared resid Schwarz criterion17.29177Log likelihood-254.2747 F-statistic1520.477Durbin-Watson stat1. Prob(F-statistic)0.X3、X5:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:28Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C27090.895304.5145.0.0000X30.0.26.297030.0000X5-0.0.-5.0.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1640.462 Akaike info criterion17.73798Sum squared resid Schwarz criterion17.87810Log likelihood-263.0698 F-statistic839.9479Durbin-Watson stat0. Prob(F-statistic)0.X3、X6:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:28Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C444.9692457.86890.0.3398X30.0.11.181990.0000X6-0.0.-5.0.0000R-squared0. Mean dependent var10049.04Adjusted R-squared0. S.D. dependent var12585.51S.E. of regression1540.096 Akaike info criterion17.61172Sum squared resid Schwarz criterion17.75184Log likelihood-261.1758 F-statistic954.8084Durbin-Watson stat0. Prob(F-statistic)0.X3、X7:Dependent Variable: YMethod: Least SquaresDate: 10/13/10 Time: 01:28Sample: 1978 2007Included observations: 30VariableCoefficientStd. Errort-StatisticProb. C4583.8052748.7461.0.1070X30.0.30.624270.0000X7-0.0.-2.0.0453R-squared0.