机械波-知识点-例题详解(共36页).doc
精选优质文档-倾情为你奉上第八章 机械振机械波目的要求:理解简谐振动和波的传播过程中各量变化的规律特点,掌握单摆模型的有关计算横波的传播规律和利用波的图象进行综合分析二、简谐振动及其描述物理量1、振动描述的物理量(1)位移:由平衡位置指向振动质点所在位置的有向线段 是矢量,其最大值等于振幅;始点是平衡位置,所以跟回复力方向永远相反;位移随时间的变化图线就是振动图象(2)振幅:离开平衡位置的最大距离是标量; 表示振动的强弱;(3)周期和频率:完成一次全变化所用的时间为周期T,每秒钟完成全变化的次数为频率f二者都表示振动的快慢;二者互为倒数;T=1/f;当T和f由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动受力特征:回复力F=KX。运动特征:加速度a=一kxm,方向与位移方向相反,总指向平衡位置。简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。说明:判断一个振动是否为简谐运动的依据是看该振动中是否满足上述受力特征或运动特征。第一单元 简谐振动、振动图像一、机械振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动振动的特点:存在某一中心位置;往复运动,这是判断物体运动是否是机械振动的条件.产生振动的条件:振动物体受到回复力作用;阻尼足够小;2、回复力:振动物体所受到的总是指向平衡位置的合外力回复力时刻指向平衡位置;回复力是按效果命名的, 可由任意性质的力提供可以是几个力的合力也可以是一个力的分力; 合外力:指振动方向上的合外力,而不一定是物体受到的合外力在平衡位置处:回复力为零,而物体所受合外力不一定为零如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)简谐运动中涉及的位移、速率、加速度的参考点,都是平衡位置.【例1】如图,轻质弹簧上端固定,下端连结一小球,平衡时小球处于O位置,现将小球由O位置再下拉一小段距离后释放(在弹性限度内),试证明释放后小球的上下振动是简谐振动,证明:设小球的质量为m,弹簧的劲度系数为k,小球处在O位置有:mgkx=0式中x为小球处在O位置时弹簧的伸长量再设小球离开O点的位移x(比如在O点的下方),并取x为矢量正方向,此时小球受到的合外力Fx为:Fx =mgk(xx)由两式可得:Fx =kx, 所以小球的振动是简谐振动,O点即其振动的平衡位置 点评:这里的F=kx,不是弹簧的弹力,而是弹力与重力的合力,即振动物体的回复力此时弹力为k(xx);所以求回复力时Fkx,x是相对平衡位置的位移,而不是相对弹簧原长的位移三弹簧振子:1、一个可作为质点的小球与一根弹性很好且不计质量的弹簧相连组成一个弹簧振子一般来讲,弹簧振子的回复力是弹力(水平的弹簧振子)或弹力和重力的合力(竖直的弹簧振子)提供的弹簧振子与质点一样,是一个理想的物理模型2、弹簧振子振动周期:T=2,只由振子质量和弹簧的劲度决定,与振幅无关,也与弹簧振动情况(如水平方向振动或竖直方向振动或在光滑的斜面上振动或在地球上或在月球上或在绕地球运转的人造卫星上)无关。3、可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是。这个结论可以直接使用。4、在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。【例2】如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(Mm)的D、B两物体箱子放在水平地面上,平衡后剪断D、B间的连线,此后D将做简谐运动当D运动到最高点时,木箱对地压力为( ) A、Mg; B(Mm)g; C、(Mm)g ; D、(M2m)g【解析】当剪断D、B间的连线后,物体D与弹簧一起可当作弹簧振子,它们将作简谐运动,其平衡位置就是当弹力与D的重力相平衡时的位置初始运动时D的速度为零,故剪断D、B连线瞬间D相对以后的平衡位置的距离就是它的振幅,弹簧在没有剪断D、B连线时的伸长量为x12 mgk,在振动过程中的平衡位置时的伸长量为x2mgk,故振子振动过程中的振幅为 Ax2x1= mgkD物在运动过程中,能上升到的最大高度是离其平衡位移为A的高度,由于D振动过程中的平衡位置在弹簧自由长度以下mgk处,刚好弹簧的自由长度处就是物D运动的最高点,说明了当D运动到最高点时,D对弹簧无作用力,故木箱对地的压力为木箱的重力Mg点评:一般说来,弹簧振子在振动过程中的振幅的求法均是先找出其平衡位置,然后找出当振子速度为零时的位置,这两个位置间的距离就是振幅本题侧重在弹簧振子运动的对称性解答本题还可以通过求D物运动过程中的最大加速度,它在最高点具有向下的最大加速度,说明了这个系统有部分失重,从而确定木箱对地面的压力四、振动过程中各物理量的变化情况振动体位置位移X回复力F加速度a速度v势能动能方向大小方向大小方向大小方向大小平衡位置O000最大最小最大最大位移处A指向A最大指向O最大指向O0最大0最大最小平衡位置O最大位移处A指向A0最大指向O0最大指向O最大OA最大0最小最大最大最小最大位移处A平衡位置O指向A最大0指向O最大0指向O最大0AO0最大最大最小最小最大说明:简谐运动的位移、回复力、加速度、速度都随时间做周期性变化(正弦或余弦函数),变化周期为T,振子的动能、势能也做周期性变化,周期为 T2。凡离开平衡位置的过程,v、Ek均减小,x、F、a、EP均增大;凡向平衡位置移动时,v、Ek均增大, x、F、a、EP均减小.振子运动至平衡位置时,x、F、a为零,EP最小,v、Ek最大;当在最大位移时,x、F、a、EP最大,v、Ek最为零;在平衡位置两侧的对称点上,x、F、a、v、Ek、EP的大小均相同【例3】如图所示,一弹簧振子在振动过程中,经a、b两点的速度相同,若它从a到b历时02s,从b再回到a的最短时间为04s,则该振子的振动频率为( )。 (A)1Hz;(B)1.25Hz (C)2Hz;(D) 25Hz 解析:振子经a、b两点速度相同,根据弹簧振子的运动特点,不难判断a、b两点对平衡位置(O点)一定是对称的,振子由b经O到a所用的时间也是02s,由于“从b再回到a的最短时间是04s,”说明振子运动到b后是第一次回到a点,且Ob不是振子的最大位移。设图中的c、d为最大位移处,则振子从bcb历时02s,同理,振子从ada,也历时02s,故该振子的周期T08s,根据周期和频率互为倒数的关系,不难确定该振子的振动频率为125Hz。 综上所述,本题应选择(B)。五、简谐运动图象1.物理意义:表示振动物体(或质点)的位移随时间变化的规律2.坐标系:以横轴表示时间,纵轴表示位移,用平滑曲线连接各时刻对应的位移末端即得3.特点:简谐运动的图象是正弦(或余弦)曲线4.应用:可直观地读取振幅A、周期T以及各时刻的位移x;判定各时刻的回复力、速度、加速度方向;判定某段时间内位移、回复力、加速度、速度、动能、势能、等物理量的变化情况注意:振动图象不是质点的运动轨迹计时点一旦确定,形状不变,仅随时间向后延伸。简谐运动图像的具体形状跟计时起点及正方向的规定有关。规律方法1、简谐运动的特点【例4】(1995年全国)一弹簧振子作简谐振动,周期为T( ) A若t时刻和(tt)时刻振子运动位移的大小相等、方向相同,则t一定等于T的整数倍 B若t时刻和(tt)时刻振子运动速度的大小相等、方向相反,则上t一定等于T/2的整数倍 C若t=T,则在 t时刻和(tt)时刻振子运动的加速度一定相等 D若tT/2,则在t时刻和(t十t)时刻弹簧的长度一定相等解析:做简谐运动时,振子由平衡位置到最大位移,再由最大位移回到平衡位置,两次经过同一点时,它们的位移大小相等、方向相同,其时间间隔并不等于周期的整数倍,选项A错误。同理在振子由指向最大位移,到反向最大位移的过程中,速度大小相等、方向相反的位里之间的时间间隔小于T/2,选项B错误。相差T/2的两个时刻,弹黄的长度可能相等,振子从平衡位置开始振动、再回到平衡位置时,弹簧长度相等、也可能不相等、选项D错误。若tT,则根据周期性,该振子所有的物理量应和t时刻都相同,a就一定相等,所以,选项C正确。 本题也可通过振动图像分析出结果,请你自己尝试一下。 【例5】如图所示,一弹簧振子在光滑水平面内做简谐振动,O为平衡位置,A,B为最大位移处,当振子由A点从静止开始振动,测得第二次经过平衡位置所用时间为t秒,在O点上方C处有一个小球,现使振子由A点,小球由C点同时从静止释放,它们恰好到O点处相碰,试求小球所在C点的高度H是多少?解析:由已知振子从A点开始运动,第一次经过O点的时间是1/4周期,第二次经过O点是3/4周期,设其周期T,所以有:t=3T/4,T=4t/3;振子第一次到O点的时间为;振子第二次到点的时间为;振子第三次到O点的时间为第n次到O点的时间为(n01,2,3)C处小球欲与振子相碰,它和振子运动的时间应该是相等的;小球做自由落体运动,所以有2、弹簧振子模型【例5】如图所示,质量为m的物块A放在木板B上,而B固定在竖直的轻弹簧上。若使 A随 B一起沿竖直方向做简谐运动而始终不脱离,则充当 A的回复力的是 。当A的速度达到最大时,A对B的压力大小为 。解析:根据题意,只要在最高点A、B仍能相对静止,则它们就会始终不脱离。而在最高点,外界对A所提供的最大回复力为mg,即最大加速度amax=g,故A、B不脱离的条件是ag,可见,在振动过程中,是A的重力和B对A的支持力的合力充当回复力。 因为A在系统的平衡位置时,速度最大,此时A所受重力与B对它的支持力的合力为零,由牛顿第三定律可知,a对B的压力大小等于其重力mg。拓展:要使不脱离B,其最大振幅为多少?可仍以最高点为例,设弹簧的劲度系数为k,B的质量为mB,因为mg=mamax,振幅最大时,a才有最大值,是由kAmax=(m+mB)g,得Amax= m+mB)g/k。运动至最低点时A对B的最大压力是多少?若让A从离静止的B上方h处自由下落与B相碰一起运动,则在最低点的加速度一定满足a>g,为什么?【例6】在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m 栓住,m静止在小车上的A点,如图所示,m与M 间的动摩擦因数为,O 点为弹簧原长位置,将细绳烧断后,m、M开始运动求:当m位于O点左侧还是右侧且跟O点多远时,小车的速度最大?并简要说明速度为最大的理由判断m与M的最终运动状态是静止、匀速运动还是相对往复的运动?【解析】在细线烧断时,小球受水平向左的弹力F与水平向右的摩擦力f作用,开始时F必大于fm相对小车右移过程中,弹簧弹力减小,而小车所受摩擦力却不变,故小车做加速度减小的加速运动当F=f时车速达到最大值,此时m必在O点左侧。设此时物体在O点左侧x处,则kx=mg。所以,当xmgk时,小车达最大速度 小车向左运动达最大速度的时刻,物体向右运动也达最大速度,这时物体还会继续向右运动,但它的运动速度将减小,即小车和物体都在做振动由于摩擦力的存在,小车和物体的振动幅度必定不断减小,设两物体最终有一共同速度v,因两物体组成的系统动量守恒,且初始状态的总动量为零,故v=0,即m与M的最终运动状态是静止的 3、利用振动图像分析简谐振动【例7】一弹簧振子沿x轴振动,振幅为4 cm. 振子的平衡位置位于x袖上的0点.图甲中的a ,b,c,d为四个不同的振动状态:黑点表示振子的位置,黑点上箭头表示运动的方向图乙给出的四条振动图线,可用于表示振子的振动图象是( AD )A.若规定状态a时t0,则图象为B.若规定状态b时t0,则图象为C.若规定状态c时t0,则图象为D.若规定状态d时t0,则图象为解析:若t0,质点处于a状态,则此时x3 cm运动方向为正方向,只有图对;若t0时质点处于b状态,此时x2 cm,运动方向为负方向,图不对;若取处于C状态时t=0,此时x=2 cm,运动方向为负方向,故图不正确;取状态d为t=0时,图刚好符合,故A,D正确点评: 对振动图象的理解和掌握要密切联系实际,既能根据实际振动画出振动图象;又能根据振动图象还原成一个具体的振动,达到此种境界,就可熟练地用图象分析解决振动试题展示1、某地区地震波中的横波和纵波传播速率分别约为4km/s和9km/s.一种简易地震仪由竖直弹簧振子P和水平弹簧振子H组成(题20图).在一次地震中,震源地地震仪下方,观察到两振子相差5s开始振动,则A. P先开始振动,震源距地震仪约36kmB. P先开始振动,震源距地震仪约25kmC. H先开始振动,震源距地震仪约36kmD. H先开始振动,震源距地震仪约25km答案:A解析:本题考查地震波有关的知识,本题为中等难度题目。由于纵波的传播速度快些,所以纵波先到达地震仪处,所以P先开始振动。设地震仪距震源为x,则有解得: x=36km.habO2、如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不变。已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半。则碰撞后DA摆动的周期为B摆动的周期为C摆球最高点与最低点的高度差为0.3hD摆球最高点与最低点的高度差为0.25h3、一列简谐横波沿x轴负方向传播,图1是t = 1s时的波形图,图2是波中某振动质元位移随时间变化的振动图线(两图用同同一时间起点),则图2可能是图1中哪个质元的振动图线?( A )x/m图1Oy/m1 2 3 4 5 6图2Ot/sy/m1 2 3 4 5 6Ax = 0处的质元; Bx = 1m处的质元;Cx = 2m处的质元; Dx = 3m处的质元。4、简谐机械波在给定的媒质中传播时,下列说法中正确的是(D)A振幅越大,则波传播的速度越快B振幅越大,则波传播的速度越慢C在一个周期内,振动质元走过的路程等于一个波长D振动的频率越高,则波传播一个波长的距离所用的时间越短5、公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板。一段时间内货物在坚直方向的振动可视为简谐运动,周期为T。取竖直向上为正方向,以某时刻作为计时起点,即,其振动图象如图所示,则( C )A 时,货物对车厢底板的压力最大B 时,货物对车厢底板的压力最小 C 时,货物对车厢底板的压力最大 D 时,货物对车厢底板的压力最小 6、一砝码和一轻弹簧构成弹簧振子,图1所示的装置可用于研究该弹簧振子的受迫振动。匀速转动把手时,曲杆给弹簧振子以驱动力,使振子做受迫振动。把手匀速转动的周期就是驱动力的周期,改变把手匀速转动的速度就可以改变驱动力的周期。若保持把手不动,给砝码一向下的初速度,砝码便做简谐运动,振动图线如图2所示.当把手以某一速度匀速转动,受迫振动达到稳定时,砝码的振动图线如图3所示.若用T0表示弹簧振子的固有周期,T表示驱动力的周期,Y表示受迫振动达到稳定后砝码振动的振幅,则ACA.由图线可知T0=4sB.由图线可知T0=8sC.当T在4s附近时,Y显著增大;当T比4s小得多或大得多时,Y很小D.当T在8s附近时,Y显著增大;当T比8s小得多或大得多时,Y很小7、 某同学看到一只鸟落在树枝上的P处,树枝在10 s内上下振动了6次,鸟飞走后,他把50 g的砝码挂在P处,发现树枝在10 s内上下振动了12次.将50 g的砝码换成500 g砝码后,他发现树枝在15 s内上下振动了6次,你估计鸟的质量最接近B A.50 g B.200 g C.500 g D.550 g8、一单摆做小角度摆动,其振动图象如图,以下说法正确的是(D )A. 时刻摆球速度最大,悬线对它的拉力最小B. 时刻摆球速度为零,悬线对它的拉力最小C. 时刻摆球速度为零,悬线对它的拉力最大D. 时刻摆球速度最大,悬线对它的拉力最大第二单元 单摆、振动中的能量一、单摆1、单摆:在细线的一端挂上一个小球,另一端固定在悬点上,如果线的伸缩和质量可以忽略,球的直径比线长短得多,这样的装置叫做单摆这是一种理想化的模型,一般情况下细线(杆)下接一个小球的装置都可作为单摆2、单摆振动可看做简谐运动的条件是:在同一竖直面内摆动,摆角100 3、单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。4、单摆的周期:当 l、g一定,则周期为定值 T=2,与小球是否运动无关与摆球质量m、振幅A都无关。其中摆长l指悬点到小球重心的距离,重力加速度为单摆所在处的测量值。要区分摆长和摆线长。5、小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l应该是圆弧半径R和小球半径r的差。6、秒摆:周期为2s的单摆其摆长约为lm.【例1】如图为一单摆及其振动图象,回答:(1)单摆的振幅为 ,频率为 ,摆长为 ,一周期内位移x(F回、a、Ep)最大的时刻为 解析:由纵坐标的最大位移可直接读取振幅为3crn横坐标可直接读取完成一个全振动即一个完整的正弦曲线所占据的时间轴长度就是周期 T=2s,进而算出频率f=1/T=0.5Hz,算出摆长l=gT2/42=1m· 从图中看出纵坐标有最大值的时刻为05 s末和15s末(2)若摆球从E指向G为正方向,为最大摆角,则图象中O、A、B、C点分别对应单摆中的 点一周期内加速度为正且减小,并与速度同方向的时间范围是 。势能增加且速度为正的时间范围是 解析:图象中O点位移为零,O到A的过程位移为正且增大A处最大,历时1/4周期,显然摆球是从平衡位置E起振并向G方向运动的,所以O对应E,A对应GA到B的过程分析方法相同,因而O、A、B、C对应E、G、E、F点 摆动中EF间加速度为正,且靠近平衡位置过程中加速度逐渐减小,所以是从F向E的运动过程,在图象中为C到D的过程,时间范围是1520s间 摆球远离平衡位置势能增加,即从E向两侧摆动,而速度为正,显然是从 E向G的过程在图象中为从O到A,时间范围是005 s间(3)单摆摆球多次通过同一位置时,下述物理量变化的是() A位移;B速度;C加速度; D动量;E动能;F摆线张力解析:过同一位置,位移、回复力和加速度不变;由机械能守恒知,动能不变,速率也不变,摆线张力mgcosm v2/L也不变;由运动分析,相邻两次过同一点,速度方向改变,从而动量方向也改变,故选B、D 如果有兴趣的话,可以分析一下,当回复力由小变大时,上述哪些物理量的数值是变小的? 从(1)、(2)、(3)看出,解决此类问题的关键是把图象和实际的振动一对应起来(4)当在悬点正下方O/处有一光滑水平细钉可挡住摆线,且¼则单摆周期为 s比较钉挡绳前后瞬间摆线的张力 解析:放钉后改变了摆长,因此单摆周期应分成钉左侧的半个周期,前已求出摆线长为lm,所以T左=1s:钉右侧的半个周期T右=05s,所以TT左十T右=15s 由受力分析,张力T=mgmv2/L,因为钉挡绳前后瞬间摆球速度不变,球重力不变,挡后摆线长为挡前的1/4所以挡后绳张力变大(5)若单摆摆球在最大位移处摆线断了,此后球做什么运动?若在摆球过平衡位置时摆线断了,摆球又做什么运动?解析:问题的关键要分析在线断的时间,摆球所处的运动状态和受力情况在最大位移处线断,此时球速度为零,只受重力作用,所以球做自由落体运动在平衡位置线断,此时球有最大水平速度,又只受重力,所以做平抛运动【例2】有一个单摆,其摆长l=102m,摆球的质量m01kg,从和竖直方向成摆角= 40的位置无初速度开始运动(如图所示),问:(1)已知振动的次数n30次,用了时间t608 s,重力加速度g多大?(2)摆球的最大回复力多大?(3)摆球经过最低点时速度多大?(4)此时悬线拉力为多大?(5)如果将这个摆改为秒摆,摆长应怎样改变?为什么?(取sin4000698,cos40 09976,314)【解析】(1)50,单摆做简谐运动,其周期T=t/n=608/30 s2·027 s,根据T=2得,g=4××102/20272=9791 m/s2。(2)最大回复力为 F1mgsin4o=01×9791×00698 N0068 N(3)单摆振动过程中,重力势能与动能互相转化,不考虑阻力,机械能守恒,其总机械能E等于摆球在最高处的重力势能E,或在最低处的速度 v=0219 m/s。(4)由Tmg=mv2/L得 悬线拉力为T=mg十mv2/L=0l×10十0l×02l92/102052 N(5)秒摆的周期T=2 s,设其摆长为L0,根据T=2得,g不变,则T即TT0=故L0= T02L/T2=22 ×l02/ 20272=0993m,其摆长要缩短LLL0l02 m0993 m=0027m二、振动的能量1、对于给定的振动系统,振动的动能由振动的速度决定,振动的势能由振动的位移决定,振动的能量就是振动系统在某个状态下的动能和势能的总和2、振动系统的机械能大小由振幅大小决定,同一系统振幅越大,机械能就越大若无能量损失,简谐运动过程中机械能守恒,做等幅振动3、阻尼振动与无阻尼振动(1)振幅逐渐减小的振动叫做阻尼振动(2)振幅不变的振动为等幅振动,也叫做无阻尼振动注意:等幅振动、阻尼振动是从振幅是否变化的角度来区分的,等幅振动不一定不受阻力作用4.受迫振动(1)振动系统在周期性驱动力作用下的振动叫做受迫振动(2)受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关5.共振(1)当驱动力的频率等于振动系统的固有频率时,物体的振幅最大的现象叫做共振 (2)条件:驱动力的频率等于振动系统的固有频率(3)共振曲线如图所示【例3】行驶着的火车车轮,每接触到两根钢轨相接处的缝隙时,就受到一次撞击使车厢在支着它的弹簧上面振动起来已知车厢的固有同期是058s,每根钢轨的长是126 m,当车厢上、下振动得最厉害时,火车的车速等于 ms 解析:该题应用共振的条件来求解火车行驶时,每当通过铁轨的接缝处就会受到一次冲击力,该力即为策动力当策动周期T策和弹簧与车厢的国有周期相等时,即发生共振,即 T策T固 058 s T策=t=L/v 将代入解得v=L/058=217 ms 答案:217ms规律方法1、单摆的等效问题等效摆长:如图所示,当小球垂直纸面方向运动时,摆长为CO等效重力加速度:当单摆在某装置内向上运动加速度为a时,T2;当向上减速时T=2,影响回复力的等效加速度可以这样求,摆球在平衡位置静止时,摆线的张力T与摆球质量的比值【例4】如图所示,在光滑导轨上有一个滚轮A,质量为2m,轴上系一根长为L的线,下端悬挂一个摆球B,质量为m,设B摆小球作小幅度振动,求振动周期。【分析】将2m的A球和m的B球组成系统为研究对象,系统的重心O点可视为单摆的悬点,利用水平方向动量守恒可求出等效摆长。【解析】A和B两物体组成的系统由于内力的作用,在水平方向上动量守恒,因此A和B速度之比跟质量成反比,即vA/vB=mB/mA=1/2因此A和B 运动过程中平均速度/=1/2,亦即位移 SA/SB1/2。,因为OAA/OBB/,则OB/OA2/1。300BACO对B球来说,其摆长应为2/3 L,因此B球的周期T2。说明:据动量守恒条件,2m在A位置时,m在 B位置,当2 m运动到A/时,m运动到B/。【例5】如图所示,三根细线OA, OB,OC结于O点,A,B端固定在同一水平面上且相距为L,使AOB成一直角三角形,BAO = 300,已知OC绳长也为L,下端C点系一个可视为质点的小球,下面说法中正确的是A、当小球在纸面内做小角度振动时,周期为:B.当小球在垂直纸面方向做小角度振动时,周期为C.当小球在纸面内做小角度振动时,周期为D.当小球在垂直纸面内做小角度振动时,周期为解析:当小球在纸面内做简谐振动时,是以0点为圆心,OC长L为半径做变速圆周运动,OA和OB绳没有松弛,其摆长为L,所以周期是;当小球在垂直于纸面的方向上做简谐振动时,摆球是以OC的延长线与AB交点为圆心做振动,其等效的摆长为L十Lsin600/2=L十L/4 ,其周期为,故选A. 拓展:若将上题中的小球改为装满沙子的漏斗,在漏斗摆动的过程中,让沙子匀速的从漏斗底部漏出,则单摆的周期如何变化?(因沙子遂渐漏出,其重心的位置先下移后上升,等效摆长先增加后减小,所以周期先变长后减小)。【例5】在图中的几个相同的单摆在不同的条件下,关于它们的周期关系,判断正确的是( ) A、T1T2T3T4; B、T1T2=T3T4 C、T1T2=T3T4、; 、 D、T1T2T3T4【解析】单摆的周期与重力加速度有关这是因为是重力的分力提供回复力当单摆处于(1)图所示的条件下,当摆球偏离平衡位置后,是重力平行斜面的分量(mgsin)沿切向分量提供回复力,回复力相对竖直放置的单摆是减小的,则运动中的加速度减小,回到平衡位置的时间变长,周期T1T3对于(2)图所示的条件,带正电的摆球在振动过程中要受到天花板上带正电小球的斥力,但是两球间的斥力与运动的方向总是垂直,不影响回复力,故单摆的周期不变,T2=T3在(4)图所示的条件下,单摆与升降机一起作加速上升的运动,也就是摆球在该升降机中是超重的,相当于摆球的重力增大,沿摆动的切向分量也增大,也就是回复力在增大,摆球回到相对平衡的位置时间变短,故周期变小,T4T3综上所述,只有C选项正确 点评:对于单摆的周期公式,在摆长不变的条件下,能影响单摆振动的周期的因素就是运动过程中的回复力发生的变化,回复力增大,周期变小,回复力变小,周期变大这是判断在摆长不变时单摆周期变化的唯一2、摆钟问题单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n与频率f成正比(n可以是分钟数,也可以是秒数、小时数),再由频率公式可以得到:【例6】有一摆钟的摆长为ll时,在某一标准时间内快amin。若摆长为l2时,在同一标准时间内慢bmin。,求为使其准确,摆长应为多长?(可把钟摆视为摆角很小的单摆)。【解析】设该标准时间为ts,准确摆钟摆长为lm,走时快的钟周期为T1s,走慢时的周期为T2s,准确的钟周期为T3。不管走时准确与否,钟摆每完成一次全振动,钟面上显示时间都是Ts。(法一)由各摆钟在ts内钟面上显示的时间求解, 对快钟: t60a=T; 对慢钟: t 60a=T 联立解,可得= 最后可得L=。(法二)由各摆钟在ts内的振动次数关系求解:设快钟的 t s内全振动次数为 nl,慢钟为 n2,准确的钟为n。显然,快钟比准确的钟多振动了60a/T次,慢钟比准确的钟少振动60b/T次,故: 对快钟:nlt/T1n60a/Tt/T+60a/T 对慢钟:n2t/T2n60b/Tt/T60b/T联解式,并利用单摆周期公式T2同样可得L=点窍:对走时不准的摆钟问题,解题时应抓住:由于摆钟的机械构造所决定,钟摆每完成一次全振动,摆钟所显示的时间为一定值,也就是走时准确的摆钟的周期T。3、单摆的综合应用【例7】图中两单摆摆长相同,平衡时两摆球刚好触现将摆球A在两摆线所在平面向左拉开一小角度后释放,碰撞后,两球分开各自做简谐运动以mA、mB分别表示摆球A、B的质量,则( ) A如果mAmB,下一次碰撞将发生在平衡位置右侧 B如果mAmB,下一次碰撞将发生在平衡位置左侧 C无论两摆球的质量之比是多少,下一次碰撞都不可能在平衡位置右侧 D无论两摆球的质量之比是多少,下一次碰撞都不可能在平衡位置左侧解析:由于两球线长相等,所以两球做单摆运动的周期必然相等.两球相碰后有这几种可能:碰后两球速度方向相反,这样两球各自到达最高点再返回到平衡位置所用的时间相等,故两球只能在平衡位置相遇;碰后两球向同一方向运动,则每个球都先到达最大位移处然后返回平衡位置,所用的时间也都是半个周期,两球仍只能在平衡位置相遇;碰后一球静止,而另一球运动,则该球先到最大位移又返回到平衡位置,所用时间还是半个周期,在平衡位置相遇. 因此,不管mAmB,还是mAmB 还是mAmB ,无论摆球质量之比为多少,下一次碰撞都只能发生在平衡位置,也就是说不可能发生在平衡位置的右侧或左侧,所以选项C、D正确拓展:两球的碰撞是否是弹性碰撞?【例8】如图所示,两个完全相同的弹性小球1,2,分别挂在长L和L/4的细线上,重心在同一水平面上且小球恰好互相接触,把第一个小球向右拉开一个不大的距离后由静止释放,经过多长时间两球发生第10次碰撞?解析:因将第1个小球拉开一个不大的距离,故摆动过程应符合单摆的周期公式有,,系统振动周期为,在同一个T内共发生两次碰撞,球1从最大位移处由静止释放后经发生10次碰撞,且第10次碰后球1又摆支最大位移处. 【例9】如图所示,AB为半径R=7.50 m的光滑的圆弧形导轨,BC为长s0.90m的光滑水平导轨,在B点与圆弧导轨相切,BC离地高度h1.80 m,一质量m10.10 kg的小球置于边缘C点,另一质量m20. 20 kg的小球置于B点,现给小球m1一个瞬时冲量使它获得大小为0.90 m/s的水平向右速度,当m1运动到B时与m2发生弹性正碰,g取10 m/s2,求:(1)两球落地的时间差t; (2)两球落地点之间的距离s 解析:(1 )m1与m2发生弹性正碰,则设碰后m1和m2速度分别为v1/和v2/,有得v1一0.3 m/s,v'2=0. 6 m/s可见m1以0. 3 m/s速度反弹,从B到C,t=s/v1/=3s, m2以0. 6 m/s速度冲上圆弧轨道,可证明m2运动可近似为简谐运动,在圆弧上运动时间为2.72 s,再从B到C, t2 =s/v2/=1.5s则tt2T/2一t1=1.22 s. (2)利用平抛运动知识不难求得s0.18 m.【例10】在长方形桌面上放有:秒表、细绳、铁架台、天平、弹簧秤、钩码,怎样从中选取器材可较为准确地测出桌面面积S?并写出面积表达式【解析】用细绳量桌面长,并用此绳(包括到钩码重心)、钩码、铁架台做成单摆,由秒表测出其振动周期T1;同理量桌面宽,做单摆,测出周期T2 答案:S=试题展示1、一单摆的摆长为L,摆球的质量为m,原来静止,在一个水平冲量I作用下开始摆动此后,每当摆球经过平衡位置时,便给它一个与其速度方向一致的冲量I,求摆球经过多长时间后其摆线与竖直方向间的夹角可以达到?(50,不计阻力,所施冲量时间极短)解析:设摆球经过平衡位置的次数为n,则摆球达最大偏角时需用时间t=(nl)十 由动量定理和机械能守恒定律得:nImv ½mv2=mgl(1cos)单摆周期 联立式得:2、如图所示,a、b、Co 质量相等的三个弹性小球(可视为质点),a、b分别悬挂在L1=1.0m,L2=0.25 m的轻质细线上,它们刚好与光滑水平面接触而不互相挤压,ab相距10cm。若c从a和b的连线中点处以v0=5 cm/s的速度向右运动,则c将与b和a反复碰撞而往复运动。已知碰撞前后