概率公式大全(共27页).doc
精选优质文档-倾情为你奉上专心-专注-专业第第 1 1 章章随机事件及其概率随机事件及其概率(1)排列组合公式)!(!nmmPnm从 m 个人中挑出 n 个人进行排列的可能数。)!( !nmnmCnm从 m 个人中挑出 n 个人进行组合的可能数。(2)加法和 乘 法 原理加法原理(两种方法均能完成此事加法原理(两种方法均能完成此事) :m+nm+n某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n种方法来完成,则这件事可由 m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事乘法原理(两个步骤分别不能完成这件事) :m mn n某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n种方法来完成,则这件事可由 mn 种方法来完成。(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试 验 和 随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(5)基本事件、样本空 间 和 事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:每进行一次试验,必须发生且只能发生这一组中的一个事件;任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用来表示。基本事件的全体,称为试验的样本空间,用表示。一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,表示事件,它们是的子集。为必然事件,为不可能事件。不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件()的概率为 1,而概率为 1 的事件也不一定是必然事件。(6)事件的 关 系 与运算关系:如果事件 A 的组成部分也是事件B的组成部分, (A发生必有事件B发生) :BA 如果同时有BA ,AB ,则称事件A与事件B等价,或称A等于B:A=B。A、B中至少有一个发生的事件:AB,或者A+B。属于A而不属于B的部分所构成的事件,称为A 与 B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。A、B同时发生:AB,或者AB。AB=,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。精选优质文档-倾情为你奉上专心-专注-专业-A 称为事件 A 的逆事件,或称 A 的对立事件,记为A。它表示 A 不发生的事件。互斥未必对立。运算:结合率:A(BC)=(AB)CA(BC)=(AB)C分配率:(AB)C=(AC)(BC)(AB)C=(AC)(BC)德摩根率:11iiiiAABABA,BABA(7)概率的 公 理 化定义设为样本空间,A为事件,对每一个事件A都有一个实数 P(A),若满足下列三个条件:1 0P(A)1,2 P() =13 对于两两互不相容的事件1A,2A,有11)(iiiiAPAP常称为可列(完全)可加性。则称 P(A)为事件A的概率。(8)古典概型1n21,,2nPPPn1)()()(21。设任一事件A,它是由m21,组成的,则有P(A)=)()()(21m=)()()(21mPPPnm基本事件总数所包含的基本事件数A(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀, 同时样本空间中的每一个基本事件可以使用一个有界区域来描述, 则称此随机试验为几何概型。对任一事件 A,)()()(LALAP。其中 L 为几何度量(长度、面积、体积) 。(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当 P(AB)0 时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当 BA 时,P(A-B)=P(A)-P(B)当 A=时,P(B)=1- P(B)(12)条件概率定义 设 A、B 是两个事件,且 P(A)0,则称)()(APABP为事件 A 发生条件下,事件 B 发生的条件概率,记为)/(ABP)()(APABP。条件概率是概率的一种,所有概率的性质都适合于条件概率。精选优质文档-倾情为你奉上专心-专注-专业例如 P(/B)=1P(B/A)=1-P(B/A)(13)乘法公式乘法公式:)/()()(ABPAPABP更一般地,对事件 A1,A2,An,若 P(A1A2An-1)0,则有21(AAP)nA)|()|()(213121AAAPAAPAP21|(AAAPn)1nA。(14)独立性两个事件的独立性两个事件的独立性设事件A、B满足)()()(BPAPABP, 则称事件A、B是相互独立的。若事件A、B相互独立,且0)(AP,则有)()()()()()()|(BPAPBPAPAPABPABP若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立。必然事件和不可能事件与任何事件都相互独立。与任何事件都互斥。多个事件的独立性多个事件的独立性设 ABC 是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足 P(ABC)=P(A)P(B)P(C)那么 A、B、C 相互独立。对于 n 个事件类似。(15)全概公式设事件nBBB,21满足1nBBB,21两两互不相容,), 2 , 1(0)(niBPi,2niiBA1,则有)|()()|()()|()()(2211nnBAPBPBAPBPBAPBPAP。(16)贝叶斯公式设事件1B,2B,nB及A满足11B,2B,nB两两互不相容,)(BiP0,i1,2,n,2niiBA1,0)(AP,则njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,n。此公式即为贝叶斯公式。)(iBP, (1i,2,n) ,通常叫先验概率。)/(ABPi, (1i,2,n) ,通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。(17)伯努利概型我们作了n次试验,且满足每次试验只有两种可能结果,A发生或A不发生;n次试验是重复进行的,即A发生的概率每次均一样;精选优质文档-倾情为你奉上专心-专注-专业每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的。这种试验称为伯努利概型,或称为n重伯努利试验。用p表示每次试验A发生的概率,则A发生的概率为qp 1,用)(kPn表示n重伯努利试验中A出现)0(nkk次的概率,knkknnqpkPC)(,nk, 2 , 1 , 0。第二章第二章随机变量及其分布随机变量及其分布(1)离散型随机变量的分布律设离散型随机变量X的可能取值为 Xk(k=1,2,)且取各个值的概率,即事件(X=Xk)的概率为P(X=xk)=pk,k=1,2,,则称上式为离散型随机变量X的概率分布或分布律。有时也用分布列的形式给出:,|)(2121kkkpppxxxxXPX。显然分布律应满足下列条件:(1)0kp,, 2 , 1k,(2)11kkp。(2)连续型随机变量的分布密度设)(xF是随机变量X的分布函数,若存在非负函数)(xf,对任意实数x,有xdxxfxF)()(,则称X为连续型随机变量。)(xf称为X的概率密度函数或密度函数,简称概率密度。密度函数具有下面 4 个性质:10)(xf。21)(dxxf。(3)离散与连续型随机变量的关系dxxfdxxXxPxXP)()()(积分元dxxf)(在连续型随机变量理论中所起的作用与kkpxXP)(在离散型随机变量理论中所起的作用相类似。精选优质文档-倾情为你奉上专心-专注-专业(4)分布函数设X为随机变量,x是任意实数,则函数)()(xXPxF称为随机变量 X 的分布函数,本质上是一个累积函数。)()()(aFbFbXaP可以得到 X 落入区间,(ba的概率。分布函数)(xF表示随机变量落入区间( ,x内的概率。分布函数具有如下性质:1, 1)(0 xFx;2)(xF是单调不减的函数,即21xx 时,有)(1xF)(2xF;30)(lim)(xFFx,1)(lim)(xFFx;4)()0(xFxF,即)(xF是右连续的;5)0()()(xFxFxXP。对于离散型随机变量,xxkkpxF)(;对于连续型随机变量,xdxxfxF)()(。(5)八大分布0-1 分布P(X=1)=p, P(X=0)=q二项分布在n重贝努里试验中,设事件A发生的概率为p。事件A发生的次数是随机变量,设为X,则X可能取值为n, 2 , 1 , 0。knkknnqpCkPkXP)()(,其中nkppq, 2 , 1 , 0, 10 ,1,则称随机变量X服从参数为n,p的二项分布。记为),(pnBX。当1n时,kkqpkXP1)(,1 . 0k,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。精选优质文档-倾情为你奉上专心-专注-专业泊松分布设随机变量X的分布律为ekkXPk!)(,0,2 , 1 , 0k,则称随机变量X服从参数为的泊松分布,记为)(X或者 P()。泊松分布为二项分布的极限分布(np=,n) 。超几何分布),min(,2 , 1 , 0,)(nMllkCCCkXPnNknMNkM随机变量 X 服从参数为 n,N,M 的超几何分布,记为 H(n,N,M)。几何分布, 3 , 2 , 1,)(1kpqkXPk,其中 p0,q=1-p。随机变量 X 服从参数为 p 的几何分布,记为 G(p)。均匀分布设随机变量X的值只落在a,b内,其密度函数)(xf在a,b上为常数ab 1,即, 0,1)(abxf其他,则称随机变量X在a,b上服从均匀分布,记为 XU(a,b)。分布函数为xdxxfxF)()(当 ax1x2b 时,X 落在区间(21,xx)内的概率为abxxxXxP1221)(。0,xb。axb精选优质文档-倾情为你奉上专心-专注-专业指数分布其中0,则称随机变量 X 服从参数为的指数分布。X 的分布函数为记住积分公式:!0ndxexxn)(xf)(xF正态分布设随机变量X的密度函数为222)(21)(xexf,x,其中、0为常数, 则称随机变量X服从参数为、的正态分布或高斯(Gauss)分布,记为),(2NX。)(xf具有如下性质:1)(xf的图形是关于x对称的;2当x时,21)(f为最大值;若),(2NX,则X的分布函数为dtexFxt222)(21)(。 。参数0、1时的正态分布称为标准正态分布,记为) 1 , 0( NX,其密度函数记为2221)(xex,x,分布函数为xtdtex2221)(。)(x是不可求积函数,其函数值,已编制成表可供查用。(-x)1-(x)且(0)21。如果X),(2N,则X) 1 , 0(N。1221)(xxxXxP。,xe0 x,0,0 x,1xe0 x, 0 x0。精选优质文档-倾情为你奉上专心-专注-专业(6)分位数下分位表:)(XP;上分位表:)(XP。(7)函数分布离散型已知X的分布列为,)(2121nnipppxxxxXPX,)(XgY 的分布列()(iixgy 互不相等)如下:,),(,),(),()(2121nnipppxgxgxgyYPY,若有某些)(ixg相等,则应将对应的ip相加作为)(ixg的概率。连续型先利用 X 的概率密度 fX(x)写出 Y 的分布函数 FY(y)P(g(X)y),再利用变上下限积分的求导公式求出 fY(y)。第三章二维随机变量及其分布(1)联合分布离散型如果二维随机向量(X,Y)的所有可能取值为至多可列个有序对(x,y) ,则称为离散型随机量。设=(X,Y)的所有可能取值为), 2 , 1,)(,(jiyxji,且事件=),(jiyx的概率为pij,称), 2 , 1,(),(),(jipyxYXPijji为=(X,Y)的分布律或称为 X 和 Y 的联合分布律。联合分布有时也用下面的概率分布表来表示:YXy1y2yjx1p11p12p1jx2p21p22p2jxipi1ijp这里pij具有下面两个性质:(1)pij0(i,j=1,2,) ;(2). 1ijijp精选优质文档-倾情为你奉上专心-专注-专业连续型对 于 二 维 随 机 向 量),(YX, 如 果 存 在 非 负 函 数),)(,(yxyxf,使对任意一个其邻边分别平行于坐标轴的矩形区域 D,即 D=(X,Y)|axb,cyx1时,有 F(x2,y)F(x1,y);当 y2y1时,有 F(x,y2) F(x,y1);(3)F(x,y)分别对 x 和 y 是右连续的,即);0,(),(), 0(),(yxFyxFyxFyxF(4). 1),(, 0),(),(),(FxFyFF(5)对于,2121yyxx0)()()()(11211222yxFyxFyxFyxF,.(4)离散型 与 连 续型的关系dxdyyxfdyyYydxxXxPyYxXP)()()(,精选优质文档-倾情为你奉上专心-专注-专业(5)边缘分布离散型X 的边缘分布为), 2 , 1,()(jipxXPPijjii;Y 的边缘分布为), 2 , 1,()(jipyYPPijijj。连续型X 的边缘分布密度为;dyyxfxfX),()(Y 的边缘分布密度为.),()(dxyxfyfY(6)条件分布离散型在已知X=xi的条件下,Y 取值的条件分布为;iijijppxXyYP)|(在已知Y=yj的条件下,X 取值的条件分布为,)|(jijjippyYxXP连续型在已知 Y=y 的条件下,X 的条件分布密度为)(),()|(yfyxfyxfY;在已知 X=x 的条件下,Y 的条件分布密度为)(),()|(xfyxfxyfX(7)独立性一般型F(X,Y)=FX(x)FY(y)离散型jiijppp有零不独立连续型f(x,y)=fX(x)fY(y)直接判断,充要条件:可分离变量正概率密度区间为矩形二维正态分布,121),(2222121211221)(2)1(212yyxxeyxf0随机变量的函数若 X1,X2,Xm,Xm+1,Xn相互独立, h,g 为连续函数,则:h(X1,X2,Xm)和 g(Xm+1,Xn)相互独立。特例:若 X 与 Y 独立,则:h(X)和 g(Y)独立。例如:若 X 与 Y 独立,则:3X+1 和 5Y-2 独立。精选优质文档-倾情为你奉上专心-专注-专业(8)二维均匀分布设随机向量(X,Y)的分布密度函数为其他, 0),(1),(DyxSyxfD其中 SD为区域 D 的面积,则称(X,Y)服从 D 上的均匀分布,记为(X,Y)U(D) 。例如图 3.1、图 3.2 和图 3.3。y1D1O1x图 3.1y1O2x图 3.2ydcOabx图 3.3D21D3精选优质文档-倾情为你奉上专心-专注-专业(9)二维正态分布设随机向量(X,Y)的分布密度函数为,121),(2222121211221)(2)1(212yyxxeyxf其中1| , 0, 0,21, 21是 5 个参数,则称(X,Y)服从二维正态分布,记为(X,Y)N().,2221, 21由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即 XN().(),22, 2211NY但是若 XN()(),22, 2211NY,(X,Y)未必是二维正态分布。(10)函数分布Z=X+Y根据定义计算:)()()(zYXPzZPzFZ对于连续型,fZ(z)dxxzxf ),(两个独立的正态分布的和仍为正态分布(222121,) 。n 个相互独立的正态分布的线性组合,仍服从正态分布。iiiC,iiiC222Z=max,min(X1,X2,Xn)若nXXX21,相 互 独 立 , 其 分 布 函 数 分 别 为)()()(21xFxFxFnxxx,则 Z=max,min(X1,X2,Xn)的分布函数为:)()()()(21maxxFxFxFxFnxxx)(1 )(1 )(1 1)(21minxFxFxFxFnxxx精选优质文档-倾情为你奉上专心-专注-专业2分布设 n 个随机变量nXXX,21相互独立,且服从标准正态分布,可以证明它们的平方和niiXW12的分布密度为. 0, 0, 0221)(2122uueunufunn我们称随机变量W服从自由度为n的2分布, 记为W)(2n,其中.2012dxexnxn所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。2分布满足可加性:设),(2iinY则).(2112kkiinnnYZt 分布设 X,Y 是两个相互独立的随机变量,且),(),1 , 0(2nYNX可以证明函数nYXT/的概率密度为2121221)(nntnnntf).(t我们称随机变量 T 服从自由度为 n 的 t 分布,记为 Tt(n)。)()(1ntnt精选优质文档-倾情为你奉上专心-专注-专业F 分布设)(),(2212nYnX, 且 X 与 Y 独 立 , 可 以 证 明21/nYnXF 的概率密度函数为0, 00,1222)(2211222121212111yyynnynnnnnnyfnnnn我们称随机变量 F 服从第一个自由度为 n1,第二个自由度为 n2的 F 分布,记为 Ff(n1, n2).),(1),(12211nnFnnF第四章第四章随机变量的数字特征随机变量的数字特征(1)一 维随 机变 量的 数字 特征离散型连续型期望期望就是平均值设 X 是离散型随机变量, 其分布律 为 P(kxX ) pk,k=1,2,n,nkkkpxXE1)((要求绝对收敛)设 X 是连续型随机变量, 其概率密度为 f(x),dxxxfXE)()((要求绝对收敛)函数的期望Y=g(X)nkkkpxgYE1)()(Y=g(X)dxxfxgYE)()()(方差D(X)=EX-E(X)2,标准差)()(XDX ,kkkpXExXD2)()(dxxfXExXD)()()(2精选优质文档-倾情为你奉上专心-专注-专业矩对于正整数 k,称随机变量 X的 k 次幂的数学期望为 X 的 k阶原点矩,记为 vk,即k=E(Xk)=iikipx,k=1,2, .对于正整数 k,称随机变量 X与 E(X)差的 k 次幂的数学期望为 X 的 k 阶中心矩, 记为k,即.)(kkXEXE=iikipXEx)(,k=1,2, .对于正整数 k,称随机变量 X 的k 次幂的数学期望为 X 的 k 阶原点矩,记为 vk,即k=E(Xk)=,)(dxxfxkk=1,2, .对于正整数 k,称随机变量 X 与E(X)差的 k 次幂的数学期望为 X的 k 阶中心矩,记为k,即.)(kkXEXE=,)()(dxxfXExkk=1,2, .切比雪夫不等式设随机变量 X 具有数学期望 E(X)=,方差 D(X)=2,则对于任意正数,有下列切比雪夫不等式22)(XP切比雪夫不等式给出了在未知 X 的分布的情况下,对概率)(XP的一种估计,它在理论上有重要意义。(2)期 望的 性质(1)E(C)=C(2)E(CX)=CE(X)(3)E(X+Y)=E(X)+E(Y),niniiiiiXECXCE11)()((4)E(XY)=E(X) E(Y),充分条件:X 和 Y 独立;充要条件:X 和 Y 不相关。(3)方 差的 性质(1)D(C)=0;E(C)=C(2)D(aX)=a2D(X);E(aX)=aE(X)(3)D(aX+b)= a2D(X);E(aX+b)=aE(X)+b(4)D(X)=E(X2)-E2(X)(5)D(XY)=D(X)+D(Y),充分条件:X 和 Y 独立;充要条件:X 和 Y 不相关。D(XY)=D(X)+D(Y) 2E(X-E(X)(Y-E(Y),无条件成立。而 E(X+Y)=E(X)+E(Y),无条件成立。(4)常 见分 布期望方差0-1 分布), 1 (pBp)1 (pp精选优质文档-倾情为你奉上专心-专注-专业的 期望 和方差二项分布),(pnBnp)1 (pnp泊松分布)(P几何分布)(pGp121pp超几何分布),(NMnHNnM11NnNNMNnM均匀分布),(baU2ba 12)(2ab 指数分布)(e121正态分布),(2N2分布2n2nt 分布02nn(n2)(5)二 维随 机变 量的 数字 特征期望niiipxXE1)(njjjpyYE1)(dxxxfXEX)()(dyyyfYEY)()(函数的期望),(YXGEijijjipyxG),(),(YXGE dxdyyxfyxG),(),(方差iiipXExXD2)()(jjjpYExYD2)()(dxxfXExXDX)()()(2dyyfYEyYDY)()()(2精选优质文档-倾情为你奉上专心-专注-专业协方差对于随机变量 X 与 Y, 称它们的二阶混合中心矩11为 X 与 Y 的协方差或相关矩,记为),cov(YXXY或,即).()(11YEYXEXEXY与记号XY相对应, X 与 Y 的方差 D (X) 与 D (Y) 也可分别记为XX与YY。相关系数对于随机变量 X 与 Y,如果 D(X)0, D(Y)0,则称)()(YDXDXY为 X 与 Y 的相关系数,记作XY(有时可简记为) 。|1, 当|=1 时, 称 X 与 Y 完全相关:1)(baYXP完全相关,时负相关,当,时正相关,当)0(1)0(1aa而当0时,称 X 与 Y 不相关。以下五个命题是等价的:0XY;cov(X,Y)=0;E(XY)=E(X)E(Y);D(X+Y)=D(X)+D(Y);D(X-Y)=D(X)+D(Y).协方差矩阵YYYXXYXX混合矩对于随机变量 X 与 Y,如果有)(lkYXE存在,则称之为 X 与 Y 的k+l阶混合原点矩,记为kl;k+l阶混合中心矩记为:.)()(lkklYEYXEXEu(6)协 方差 的性质(i)cov (X, Y)=cov (Y, X);(ii)cov(aX,bY)=ab cov(X,Y);(iii)cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);(iv)cov(X,Y)=E(XY)-E(X)E(Y).精选优质文档-倾情为你奉上专心-专注-专业(7)独 立和 不相关(i)若随机变量 X 与 Y 相互独立,则0XY;反之不真。(ii)若(X,Y)N(,222121) ,则 X 与 Y 相互独立的充要条件是 X 和 Y 不相关。第五章第五章大数定律和中心极限定理大数定律和中心极限定理(1)大数定律X切比雪夫大数定律设随机变量 X1,X2,相互独立,均具有有限方差,且被同一常数 C 所界:D(Xi)C(i=1,2,),则对于任意的正数,有. 1)(11lim11niiniinXEnXnP特殊情形:若 X1,X2,具有相同的数学期望 E(XI)=,则上式成为. 11lim1niinXnP伯努利大数定律设是 n 次独立试验中事件 A 发生的次数,p 是事件 A 在每次试验中发生的概率,则对于任意的正数,有. 1limpnPn伯努利大数定律说明,当试验次数 n 很大时,事件 A 发生的频率与概率有较大判别的可能性很小,即. 0limpnPn这就以严格的数学形式描述了频率的稳定性。辛钦大数定律设 X1,X2,Xn,是相互独立同分布的随机变量序列,且 E(Xn)=,则对于任意的正数有. 11lim1niinXnP精选优质文档-倾情为你奉上专心-专注-专业(2)中心极限定理),(2nNX列维林德伯格定理设随机变量 X1,X2,相互独立,服从同一分布,且具有相同的数学期望和方差:), 2 , 1(0)(,)(2kXDXEkk,则随机变量nnXYnkkn1的分布函数Fn(x)对任意的实数x,有xtnkknnndtexnnXPxF.21lim)(lim212此定理也称为独立同分布独立同分布的中心极限定理。棣莫弗拉普拉斯定理设随机变量nX为具有参数 n, p(0p1)的二项分布,则对于任意实数 x,有xtnndtexpnpnpXP.21)1 (lim22(3)二项定理若当),(,不变时knpNMN,则knkknnNknMNkMppCCCC)1 ().(N超几何分布的极限分布为二项分布。(4)泊松定理若当0,npn时,则ekppCkknkkn!)1 ().(n其中 k=0,1,2,n,。二项分布的极限分布为泊松分布。第六章第六章 样本及抽样分布样本及抽样分布(1)数理统 计 的 基本概念总体在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体 (或母体) 。 我们总是把总体看成一个具有分布的随机变量(或随机向量) 。个体总体中的每一个单元称为样品(或个体) 。精选优质文档-倾情为你奉上专心-专注-专业样本我们把从总体中抽取的部分样品nxxx,21称为样本。样本中所含的样品数称为样本容量, 一般用 n 表示。 在一般情况下,总是把样本看成是 n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时,nxxx,21表示 n 个随机变量(样本) ;在具体的一次抽取之后,nxxx,21表示 n 个具体的数值(样本值) 。我们称之为样本的两重性。样本函数和统计量设nxxx,21为总体的一个样本,称(nxxx,21)为样本函数,其中为一个连续函数。如果中不包含任何未知参数,则称(nxxx,21)为一个统计量。常见统计量及其性质样本均值.11niixnx样本方差niixxnS122.)(11样本标准差.)(1112niixxnS样本 k 阶原点矩nikikkxnM1., 2 , 1,1样本 k 阶中心矩nikikkxxnM1., 3 , 2,)(1)(XE,nXD2)(,22)(SE,221)*(nnSE,其中niiXXnS122)(1*,为二阶中心矩。精选优质文档-倾情为你奉上专心-专注-专业(2)正态总 体 下 的四大分布正态分布设nxxx,21为来自正态总体),(2N的一个样本,则样本函数).1 , 0(/Nnxudeft 分布设nxxx,21为来自正态总体),(2N的一个样本,则样本函数),1(/ntnsxtdef其中 t(n-1)表示自由度为 n-1 的 t 分布。分布2设nxxx,21为来自正态总体),(2N的一个样本,则样本函数),1() 1(222nSnwdef其中) 1(2n表示自由度为 n-1 的2分布。F 分布设nxxx,21为来自正态总体),(21N的一个样本,而nyyy,21为来自正态总体),(22N的一个样本,则样本函数),1, 1(/2122222121nnFSSFdef其中,)(11211211niixxnS;)(11212222niiyynS) 1, 1(21nnF表示第一自由度为11n,第二自由度为12n的 F 分布。(3)正态总 体 下 分布的性质X与2S独立。第七章第七章参数估计参数估计精选优质文档-倾情为你奉上专心-专注-专业(1) 点估计矩估计设总体 X 的分布中包含有未知数m,21, 则其分布函数可以表成).,;(21mxF它的 k 阶原点矩), 2 , 1)(mkXEvkk中也包含了未知参数m,21,即),(21mkkvv。又设nxxx,21为总体 X 的 n 个样本值,其样本的 k 阶原点矩为nikixn11)., 2 , 1(mk这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有nimimmniimniimxnvxnvxnv121122121211.1),(,1),(,1),(由上面的 m 个方程中,解出的 m 个未知参数),(21m即为参数(m,21)的矩估计量。若为的矩估计,)(xg为连续函数,则)(g为)(g的矩估计。精选优质文档-倾情为你奉上专心-专注-专业极 大 似然估计当 总 体 X 为 连 续 型 随 机 变 量 时 , 设 其 分 布 密 度 为),;(21mxf, 其 中m,21为 未 知 参 数 。 又 设nxxx,21为总体的一个样本,称),;(),(11122nimimxfL为样本的似然函数,简记为Ln.当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为),;(21mxpxXP,则称),;(),;,(1111222nimimnxpxxxL为样本的似然函数。若似然函数),;,(2211mnxxxL在m,21处取到最大值,则称m,21分别为m,21的最大似然估计值,相应的统计量称为最大似然估计量。miLiiin, 2 , 1, 0ln若为的极大似然估计,)(xg为单调函数,则)(g为)(g的极大似然估计。(2) 估计量的评选标准无偏性设),(21nxxx为未知参数的估计量。若 E ()=,则称为的无偏估计量。E(X)=E(X) , E(S2)=D(X)有效性设),(2111nxxx和),(2122nxxx是未知参数的两个无偏估计量。若)()(21DD,则称21比有效。精选优质文档-倾情为你奉上专心-专注-专业一致性设n是的一串估计量,如果对于任意的正数,都有, 0)|(|limnnP则称n为的一致估计量(或相合估计量) 。若为的无偏估计,且),(0)(nD则为的一致估计。只要总体的 E(X)和 D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。(3) 区间估计置 信 区间 和 置信度设总体X 含有一个待估的未知参数。 如果我们从样本nxxx,21出发,找出两个统计量),(2111nxxx与),(2122nxxx)(21, 使 得 区 间,21以) 10(1的概率包含这个待估参数,即,121P那么称区间,21为的置信区间,1为该区间的置信度(或置信水平) 。单 正 态总 体 的期 望 和方 差 的区 间 估计设nxxx,21为总体),(2NX的一个样本,在置信度为1下,我们来确定2和的置信区间,21。具体步骤如下:(i)选择样本函数;(ii)由置信度1,查表找分位数;(iii)导出置信区间,21。已知方差,估计均值(i)选择样本函数).1 , 0(/0Nnxu(ii) 查表找分位数.1/0nxP(iii)导出置信区间nxnx00,精选优质文档-倾情为你奉上专心-专注-专业未知方差,估计均值(i)选择样本函数).1(/ntnSxt(ii)查表找分位数.1/nSxP(iii)导出置信区间nSxnSx,方差的区间估计(i)选择样本函数).1() 1(222nSnw(ii)查表找分位数.1) 1(2221SnP(iii)导出的置信区间SnSn121,1第八章第八章假设检验假设检验基本思想假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备择假设,用H1表示。这里所说的小概率事件就是事件RK ,其概率就是检验水平,通常我们取=0.05,有时也取 0.01 或 0.10。基本步骤假设检验的基本步骤如下:(i)提出零假设H0;(ii)选择统计量K;(iii)对于检验水平查表找分位数;(iv)由样本值nxxx,21计算统计量之值K;将与K进行比较,作出判断:当)(|KK或时否定H0,否则认为H0相容。精选优质文档-倾情为你奉上专心-专注-专业两类错误第一类错误当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否定了真实的假设) ,称这种错误为“以真当假”的错误或第一类错误,记为犯此类错误的概率,即P否定H0|H0为真=;此处的恰好为检验水平。第二类错误当H1为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受H0。这时,我们把客观上H0。不成立判为H0成立(即接受了不真实的假设) ,称这种错误为“以假当真”的错误或第二类错误,记为犯此类错误的概率,即P接受H0|H1为真=。两类错误的关系人们当然希望犯两类错误的概率同时都很小。 但是, 当容量 n 一定时,变小,则变大;相反地,变小,则变大。取定要想使变小,则必须增加样本容量。在实际使用时,通常人们只能控制犯第一类错误的概率, 即给定显著性水平。 大小的选取应根据实际情况而定。当我们宁可“以假为真” 、而不愿“以真当假”时,则应把取得很小,如 0.01,甚至 0.001。反之,则应把取得大些。单正态总体均值和方差的假设检验条件零假设统计量对应样本函数分布否定域已知200:HnxU/00N(0,1)21| uu00:H1uu00:H1uu未知200:HnSxT/0) 1( nt) 1(|21ntt00:H) 1(1ntt00:H) 1(1ntt未知2220:H202) 1(Snw) 1(2n) 1() 1(22122nwnw或精选优质文档-倾情为你奉上专心-专注-专业2020:H) 1(21nw2020:H) 1(2nw