欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年数学备考要点考点系列七平面解析几何 .pdf

    • 资源ID:14204185       资源大小:276.41KB        全文页数:8页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年数学备考要点考点系列七平面解析几何 .pdf

    20XX年数学备考要点考点系列七平面解析几何一、高考预测题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30 分左右,占总分值的20% 左右。整体平衡,重点突出:一般考查的知识点超过50,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合, 考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型: 求曲线方程(类型确定、类型未定);直线与圆锥曲线的交点问题(含切线问题) ;与曲线有关的最(极)值问题;与曲线有关的几何证明( 对称性或求对称曲线、平行、垂直) ;探求曲线方程中几何量及参数间的数量特征;题型新颖,位置不定: 近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等) ,凸现教材中研究性学习的能力要求。加大探索性题型的分量。20XX年高考对解析几何的考查主要包括以下内容:直线与圆的方程、圆锥曲线等, 在高考试卷中一般有12 个客观题和1 个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,而解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇等,考查一些存在性问题、证明问题、 定点与定值、 最值与范围问题等,解析几何试题的特点是思维量大、运算量大,所以应加强对解析几何重点题型的训练。问题设置的方向为:(1)以椭圆为入口,求标准方程; (2)几何性质;( 3)范围或最值性问题。高中数学难,解析几何又是难中之难。其实不然,解析几何题目自有路径可循,方法可依。只要经过认真的准备和正确的点拨,完全可以让高考数学的解析几何压轴题变成让同学们都很有信心的中等题目。二、知识导学( 一) 直线的方程1. 点斜式:)(11xxkyy;2. 截距式:bkxy; 3. 两点式:121121xxxxyyyy;4. 截距式:1byax;5. 一般式:0CByAx,其中 A、B不同时为0. ( 二) 两条直线的位置关系两条直线1l,2l有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点). 在这三种位置关系中,我们重点研究平行与相交. 设直线1l:y=1k x+1b,直线2l:y=2kx+2b,则1l2l的充要条件是1k=2k,且1b=2b;1l2l的充要条件是1k2k=-1. ( 三) 圆的有关问题1. 圆的标准方程精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 8 页 - - - - - - - - - - 222)()(rbyax(r 0) ,称为圆的标准方程,其圆心坐标为(a,b) ,半径为r. 特别地,当圆心在原点(0,0) ,半径为 r 时,圆的方程为222ryx. 2. 圆的一般方程022FEyDxyx(FED4220)称为圆的一般方程,其圆心坐标为(2D,2E) ,半径为FEDr42122. 当FED422=0 时,方程表示一个点(2D,2E) ;当FED4220 时,方程不表示任何图形. 3. 圆的参数方程圆的普通方程与参数方程之间有如下关系:222ryxcossinxryr(为参数)222)()(rbyaxcossinxarybr(为参数)( 四) 椭圆及其标准方程1.椭圆的定义: 椭圆的定义中, 平面内动点与两定点1F、2F的距离的和大于|1F2F|这个条件不可忽视.若这个距离之和小于|1F2F| ,则这样的点不存在;若距离之和等于|1F2F| ,则动点的轨迹是线段1F2F. 2. 椭圆的标准方程:12222byax(ab0) ,12222bxay(ab0). 3. 椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x项的分母大于2y项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上 . 4. 求椭圆的标准方程的方法: 正确判断焦点的位置; 设出标准方程后,运用待定系数法求解 . ( 五) 椭圆的简单几何性质1. 椭圆的几何性质:设椭圆方程为12222byax(ab0). 范围: -a xa,-b xb,所以椭圆位于直线x=a和 y=b所围成的矩形里. 对称性:分别关于x 轴、 y 轴成轴对称,关于原点中心对称. 椭圆的对称中心叫做椭圆的中心 . 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 8 页 - - - - - - - - - - 顶点:有四个1A(-a ,0) 、2A(a,0)1B(0,-b ) 、2B(0,b). 线段1A2A、1B2B分别叫做椭圆的长轴和短轴. 它们的长分别等于2a 和 2b,a 和 b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. 离心率:椭圆的焦距与长轴长的比ace叫做椭圆的离心率.它的值表示椭圆的扁平程度 .0 e1.e 越接近于 1 时,椭圆越扁;反之,e 越接近于0 时,椭圆就越接近于圆. 2.椭圆的第二定义 定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数ace(e1时,这个动点的轨迹是椭圆. 准线:根据椭圆的对称性,12222byax(ab0)的准线有两条,它们的方程为cax2. 对于椭圆12222bxay(ab0)的准线方程,只要把x 换成 y 就可以了,即cay2. 3. 椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径. 设1F(-c ,0) ,2F(c,0)分别为椭圆12222byax(ab0)的左、右两焦点,M (x,y)是椭圆上任一点,则两条焦半径长分别为exaMF1,exaMF2. 椭圆中涉及焦半径时运用焦半径知识解题往往比较简便. 椭圆的四个主要元素a、b、 c、e 中有2a=2b+2c、ace两个关系,因此确定椭圆的标准方程只需两个独立条件. ( 六) 椭圆的参数方程椭圆12222byax(ab0)的参数方程为cossinxayb(为参数). 说明 这里参数叫做椭圆的离心角. 椭圆上点P的离心角与直线OP的倾斜角不同:tantanab; 椭圆的参数方程可以由方程12222byax与三角恒等式1sincos22相比较而得到,所以椭圆的参数方程的实质是三角代换. ( 七) 双曲线及其标准方程1. 双曲线的定义:平面内与两个定点1F、2F的距离的差的绝对值等于常数2a(小于精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 8 页 - - - - - - - - - - |1F2F| )的动点M的轨迹叫做双曲线. 在这个定义中,要注意条件2a|1F2F| ,这一条件可以用 “三角形的两边之差小于第三边”加以理解 . 若 2a=|1F2F| ,则动点的轨迹是两条射线;若 2a|1F2F| ,则无轨迹 . 若1MF2MF时,动点M的轨迹仅为双曲线的一个分支,又若1MF2MF时,轨迹为双曲线的另一支. 而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”. 2.双曲线的标准方程:12222byax和12222bxay(a0, b0) . 这里222acb,其中|1F2F|=2c. 要注意这里的a、b、c 及它们之间的关系与椭圆中的异同. 3. 双曲线的标准方程判别方法是:如果2x项的系数是正数,则焦点在x 轴上;如果2y项的系数是正数,则焦点在y 轴上 . 对于双曲线, a 不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 4.求双曲线的标准方程,应注意两个问题: 正确判断焦点的位置; 设出标准方程后,运用待定系数法求解. ( 八) 双曲线的简单几何性质1. 双曲线12222byax的实轴长为2a,虚轴长为2b,离心率ace1,离心率 e 越大,双曲线的开口越大. 2. 双曲线12222byax的渐近线方程为xaby或表示为02222byax. 若已知双曲线的渐近线方程是xnmy,即0nymx,那么双曲线的方程具有以下形式:kynxm2222,其中 k 是一个不为零的常数. 3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1 的常数(离心率) 的点的轨迹叫做双曲线. 对于双曲线12222byax,它的焦点坐标是 (-c ,0)和( c,0) ,与它们对应的准线方程分别是cax2和cax2. 在双曲线中,a、 b、c、e 四个元素间有ace与222bac的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件 . ( 九) 抛物线的标准方程和几何性质1抛物线的定义:平面内到一定点(F)和一条定直线(l )的距离相等的点的轨迹叫精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 8 页 - - - - - - - - - - 抛物线。这个定点F叫抛物线的焦点,这条定直线l 叫抛物线的准线。需强调的是,点F 不在直线l 上,否则轨迹是过点F 且与 l 垂直的直线,而不是抛物线。2抛物线的方程有四种类型:22ypx、22ypx、22xpy、22xpy. 对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项; 一次项前面是正号则曲线的开口方向向x 轴或 y 轴的正方向; 一次项前面是负号则曲线的开口方向向x 轴或 y 轴的负方向。3抛物线的几何性质,以标准方程y2=2px 为例(1)范围: x0;(2)对称轴:对称轴为y=0,由方程和图像均可以看出;(3)顶点: O(0,0) ,注:抛物线亦叫无心圆锥曲线(因为无中心);(4)离心率: e=1,由于 e 是常数,所以抛物线的形状变化是由方程中的p 决定的;(5)准线方程2px;(6)焦半径公式:抛物线上一点P (x1,y1) ,F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p0) :22112:;2:22ppypxPFxypxPFx22112:;2:22ppxpy PFyxpy PFy(7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(pO )的焦点 F 的弦为 AB,A (x1,y1) ,B (x2,y2) ,AB的倾斜角为,则有 |AB|=x1+x2+p22|sinpAB以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求。(8) 直线与抛物线的关系: 直线与抛物线方程联立之后得到一元二次方程:x2+bx+c=0,当 a0 时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时, 直线和抛物线相交,但只有一个公共点。( 十) 轨迹方程 曲线上的点的坐标都是这个方程的解;以这个方程的解为坐标的点都是曲线上的点 . 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形或轨迹). 注意事项 1 直线的斜率是一个非常重要的概念,斜率k反映了直线相对于x 轴的倾斜程度.当斜率k存在时,直线方程通常用点斜式或斜截式表示,当斜率不存在时,直线方程为x=a(aR). 因此,利用直线的点斜式或斜截式方程解题时,斜率k 存在与否,要分别考虑. 直线的截距式是两点式的特例,a、b 分别是直线在x 轴、y 轴上的截距, 因为 a 0,b0,所以当直线平行于x 轴、平行于y 轴或直线经过原点,不能用截距式求出它的方程,而应选择其它形式求解. 求解直线方程的最后结果,如无特别强调,都应写成一般式. 当直线1l或2l的斜率不存在时,可以通过画图容易判定两条直线是否平行与垂直精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 8 页 - - - - - - - - - - 在处理有关圆的问题,除了合理选择圆的方程,还要注意圆的对称性等几何性质的运用,这样可以简化计算. 2. 用待定系数法求椭圆的标准方程时,要分清焦点在x 轴上还是 y 轴上,还是两种都存在 . 注意椭圆定义、性质的运用,熟练地进行a、 b、c、e 间的互求,并能根据所给的方程画出椭圆 . 求双曲线的标准方程应注意两个问题:正确判断焦点的位置;设出标准方程后, 运用待定系数法求解. 双曲线12222byax的渐近线方程为xaby或表示为02222byax.若已知双曲线的渐近线方程是xnmy,即0nymx,那么双曲线的方程具有以下形式:kynxm2222,其中 k 是一个不为零的常数. 双曲线的标准方程有两个12222byax和12222bxay(a0, b0) . 这里222acb, 其中 |1F2F|=2c.要注意这里的a、b、c 及它们之间的关系与椭圆中的异同. 求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再求抛物线的标准方程,要线根据题设判断抛物线的标准方程的类型,再由条件确定参数p 的值. 同时,应明确抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中一个,就可以求出其他两个. 解题的策略有: 1、 注意直线倾斜角范围、 设直线方程时注意斜率是否存在,可以设成,包含斜率不存在情况,但不包含斜率为0 情况。注意截距为0 的情况; 注意点关于直线对称问题(光线的反射问题) ;注意证明曲线过定点方法(两种方法:特殊化、分离变量)2、注意二元二次方程表示圆的充要条件、善于利用切割线定理、相交弦定理、 垂径定理等平面中圆的有关定理解题; 注意将圆上动点到定点、定直线的距离的最值转化为圆心到它们的距离;注意圆的内接四边形的一些性质以及正弦定理、余弦定理。 以过某点的线段为弦的面积最小的圆是以线段为直径,而面积最大时,是以该点为线段中点。3、注意圆与椭圆、三角、向量(注意利用加减法转化、利用模与夹角转化、然后考虑坐标化)结合;4、注意构建平面上的三点模型求最值,一般涉及“和”的问题有最小值,“差”的问题有最大值,只有当三点共线时才取得最值;5、熟练掌握求椭圆方程、双曲线方程、抛物线方程的方法:待定系数法或定义法, 注意焦点位置的讨论,注意双曲线的渐近线方程:焦点在轴上时为,焦点在 轴上时为;注意化抛物线方程为标准形式(即2p、p、 的关系);注意利用比例思想,减少变量,不知道焦点位置时,可设椭圆方程为。6、熟练利用圆锥曲线的第一、第二定义解题;熟练掌握求离心率的题型与方法,特别提醒在求圆锥曲线方程或离心率的问题时注意利用比例思想方法,减少变量。7、注意圆锥曲线中的最值等范围问题:产生不等式的条件一般有:“法” ;离心率的范围;自变量的范围;曲线上的点到顶点、焦点、准线的范围;注意寻找两个变量的关系式,用一个变量表示另一个变量,化为单个变量,建立关于参数的目标函数,转化为函数的值域当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法,注意点是要考虑曲线上点坐标(x ,y) 的取值范围、离心率范围以及根的判别式范围。8、求轨迹方程的常见方法:直接法;几何法;定义法;相关点法; 9 、注意利用向量方法,注意垂直、平行、中点等条件以向量形式给出;注意将有关向量的表达式合理变形;特别注意遇到角的问题,可以考虑利用向量数量积解决;10、注意存在性、探索性问题的研究,注意从特殊到一般的方法。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 8 页 - - - - - - - - - - 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 8 页 - - - - - - - - - - 文档编码:KDHSIBDSUFVBSUDHSIDHSIBF-SDSD587FCDCVDCJUH 欢迎下载 精美文档欢迎下载 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 8 页 - - - - - - - - - -

    注意事项

    本文(2022年数学备考要点考点系列七平面解析几何 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开