高中家教数学数列部分(共23页).docx
精选优质文档-倾情为你奉上最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。一、直接法根据数列的特征,使用作差法等直接写出通项公式。例1. 根据下列数列的前几项,说出数列的通项公式:1、1.3.7.15.312、1,2,5,8,123、4、1,-1,1,-15、1、0、1、0二、公式法利用等差数列或等比数列的定义求通项若已知数列的前项和与的关系,求数列的通项可用公式求解.(注意:求完后一定要考虑合并通项)例2已知数列的前项和满足求数列的通项公式.已知数列的前项和满足,求数列的通项公式. 已知等比数列的首项,公比,设数列的通项为,求数列的通项公式。解析:由题意,又是等比数列,公比为,故数列是等比数列, 三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。也可以猜想出规律,然后正面证明。例3.(2002年北京春季高考)已知点的序列,其中,是线段的中点,是线段的中点,是线段的中点,(1) 写出与之间的关系式()。(2) 设,计算,由此推测的通项公式,并加以证明。(3) 略解析:(1) 是线段的中点, (2),=,=,猜想,下面用数学归纳法证明 当n=1时,显然成立; 假设n=k时命题成立,即 则n=k+1时,= = 当n=k+1时命题也成立, 命题对任意都成立。变式:(2006,全国II,理,22,本小题满分12分)设数列an的前n项和为Sn,且方程x2anxan0有一根为Sn1,n1,2,3,()求a1,a2;()an的通项公式 四、累加(乘)法对于形如型或形如型的数列,我们可以根据递推公式,写出n取1到n时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。例4. 若在数列中,求通项。解析:由得,所以,将以上各式相加得:,又所以 =例5. 在数列中,(),求通项。解析:由已知,又,所以=五、取倒(对)数法a、这种类型一般是等式两边取对数后转化为,再利用待定系数法求解b、数列有形如的关系,可在等式两边同乘以先求出c、解法:这种类型一般是等式两边取倒数后换元转化为。例6.设数列满足求解:原条件变形为两边同乘以得.例7 、 设正项数列满足,(n2).求数列的通项公式.解:两边取对数得:,设,则 是以2为公比的等比数列,., 变式:1.已知数列an满足:a1,且an(1) 求数列an的通项公式;(2) 证明:对于一切正整数n,不等式a1·a2·an<2·n!2、若数列的递推公式为,则求这个数列的通项公式。3、已知数列满足时,求通项公式。4、已知数列an满足:,求数列an的通项公式。5、若数列a中,a=1,a= nN,求通项a 六、迭代法迭代法就是根据递推式,采用循环代入计算.例8、(2003·高考·广东)设a 0为常数,且a n3 n -12 a n -1(n为正整数)证明对任意n1 , a n 3 n(1)n -1· 2 n (1)n · 2 n a 0 证明: a n3 n -12 a n -13 n -12(3 n -22 a n -2) 3 n -12· 3 n -22 2(3 n -32 a n -3) 3 n -12 ·3 n -22 2 ·3 n -32 3(3 n -42 a n -4) 3 n -12·3 n -22 2·3 n 3 (1)n -1·2 n -1(1)n ·2 n a 0(1)n ·2 n a 0 前面的n项组成首项为3 n -1,公比为的等比数列,这n项的和为: 3 n(1)n -1·2 n a n 3 n(1)n -1· 2 n (1)n · 2 n a 0七、待定系数法:求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,该方法体现了数学中化未知为已知的化归思想,运用待定系数法变换递推式中的常数就是一种重要的转化方法。1、通过分解常数,可转化为特殊数列a+k的形式求解。一般地,形如a=p a+q(p1,pq0)型的递推式均可通过待定系数法对常数q分解法:设a+k=p(a+k)与原式比较系数可得pkk=q,即k=,从而得等比数列a+k。例9、数列a满足a=1,a=a+1(n2),求数列a的通项公式。解:由a=a+1(n2)得a2=(a2),而a2=12=1,数列 a2是以为公比,1为首项的等比数列a2=() a=2()说明:通过对常数1的分解,进行适当组合,可得等比数列 a2,从而达到解决问题的目的。练习、1数列a满足a=1,,求数列a的通项公式。解:由得设a,比较系数得解得是以为公比,以为首项的等比数列 2、已知数列满足,且,求解:设,则,是以为首项,以3为公比的等比数列点评:求递推式形如(p、q为常数)的数列通项,可用迭代法或待定系数法构造新数列来求得,也可用“归纳猜想证明”法来求,这也是近年高考考得很多的一种题型2、递推式为(p、q为常数)时,可同除,得,令从而化归为(p、q为常数)型、例10已知数列满足, ,求解:将两边同除,得设,则令条件可化成,数列是以为首项,为公比的等比数列因,3、形如解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,从而转化为是公比为的等比数列。例11:设数列:,求.解:令化简得:所以解得 ,所以又因为,所以数列是以5为首项,3为公比的等比数列。从而可得变式:(2006,山东,文,22,本小题满分14分)已知数列中,在直线y=x上,其中n=1,2,3 ()令 ()求数列4、形如解法:这种类型一般利用待定系数法构造等比数列,即令,与已知递推式比较,解出,z.从而转化为是公比为的等比数列。例12:设数列:,求.5. 递推公式为(其中p,q均为常数)。解法一(待定系数法):先把原递推公式转化为其中s,t满足解法二(特征根法):对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。例13:已知数列中,,,求。变式:1.已知数列满足(I)证明:数列是等比数列;(II)求数列的通项公式;(III)若数列满足证明是等差数列 2.已知数列中,,,求3.已知数列中,是其前项和,并且,设数列,求证:数列是等比数列;设数列,求证:数列是等差数列;求数列的通项公式及前项和。八:特征根法。1、设已知数列的项满足,其中求这个数列的通项公式。作出一个方程则当时,为常数列,即,其中是以为公比的等比数列,即.2.对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。例14:(1)已知数列满足,求数列的通项公式。解法一(待定系数迭加法)由,得,且。则数列是以为首项,为公比的等比数列,于是。把代入,得,。把以上各式相加,得。解法二(特征根法:这种方法一般不用于解答题):数列:, 的特征方程是:。 ,。又由,于是 故(2)已知数列满足:求解:作方程 当时,数列是以为公比的等比数列.于是九:不动点法,形如解法:如果数列满足下列条件:已知的值且对于,都有(其中p、q、r、h均为常数,且),那么,可作特征方程,当特征方程有且仅有一根时,则是等差数列;当特征方程有两个相异的根、时,则是等比数列。例15:已知数列满足性质:对于且求的通项公式. 例:已知数列满足:对于都有(1)若求(2)若求(3)若求(4)当取哪些值时,无穷数列不存在?变式:(2005,重庆,文,22,本小题满分12分)数列记()求b1、b2、b3、b4的值; ()求数列的通项公式及数列的前n项和十:换元法:类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有规律性。例16 已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化为,所以是以为首项,以为公比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。例18. 已知数列满足,求 。解析:设, , ,总之,求数列的通项公式,就是将已知数列转化成等差(或等比)数列,从而利用等差(或等比)数列的通项公式求其通项。十一。双数列解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。例19. 已知数列中,;数列中,。当时,,,求,.解:因所以即(1)又因为所以.即(2)由(1)、(2)得:, 十二、周期型 解法:由递推式计算出前几项,寻找周期。例20:若数列满足,若,则的值为_。变式:(2005,湖南,文,5)已知数列满足,则=( )A0BCD十三、分解因式法当数列的关系式较复杂,可考虑分解因式和约分化为较简形式,再用其它方法求得an.例21.已知数列满足(n),且有条件2).解:由得:对n,再由待定系数法得:十四、循环法数列有形如的关系,如果复合数列构不成等差、等比数列,有时可考虑构成循环关系而求出例22.在数列中,解:由条件即即每间隔6项循环一次.1998=6×333,十五、开方法对有些数列,可先求再求2bn=an+an+1,a2n+1=bn·bn+1.例23、两个数列它们的每一项都是正整数,且对任意自然数、成等差数列,、成等比数列,解:由条件有: 由式得:把、代入得:,变形得).0,.是等差数列.因故小结:除了熟悉以上常见求法以外,对具体的数列进行适当的变形,一边转化为熟知的数列模型更是突破数列通项的关键。做题时要不断总结经验,多加琢磨。总结方法比做题更重要!方法产生于具体数学内容的学习过程中. 1.直接法2.公式法3.归纳猜想法4.累加(乘)法5.取倒(对)数法6.迭代法7.待定系数法8.特征根法9.不动点法10.换元法11.双数列12.周期型13.分解因式法14.循环法15.开方法递推数列特征方程的来源与应用递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。关于一阶线性递推数列:其通项公式的求法一般采用如下的参数法1,将递推数列转化为等比数列:设 ,令,即,当时可得知数列是以为公比的等比数列,将代入并整理,得对于二阶线性递推数列,许多文章都采用特征方程法2:设递推公式为其特征方程为,1、 若方程有两相异根、,则2、 若方程有两等根则其中、可由初始条件确定。很明显,如果将以上结论作为此类问题的统一解法直接呈现出来,学生是难以接受的,也是不负责任的。下面我们结合求一阶线性递推数列的参数法,探讨上述结论的“来源”。设,则,令 (*)(1) 若方程组(*)有两组不同的解,则, ,由等比数列性质可得, ,由上两式消去可得.特别地,若方程组(*)有一对共扼虚根通过复数三角形式运算不难求得此时数列的通项公式为其中、可由初始条件求出。(2) 若方程组(*)有两组相等的解,易证此时,则,,即是等差数列,由等差数列性质可知,所以这样,我们通过将递推数列转化为等比(差)数列的方法,求得二阶线性递推数列的通项,若将方程组(*)消去(或)即得此方程的两根即为特征方程的两根,读者不难发现它们的结论是完全一致的,这正是特征方程法求递推数列通项公式的根源所在。例1、 斐波那契数列,求通项公式。解 此数列对应特征方程为即,解得, 设此数列的通项公式为,由初始条件可知,解之得,所以。例2、 已知数列且,求通项公式。解 此数列对应特征方程为即,解得, 设此数列的通项公式为,由初始条件可知,解之得,所以。例3 已知数列且,求通项公式。解 此数列对应特征方程为即,解得 设此数列的通项公式为,由初始条件可知,解之得,所以。最后我们指出,上述结论在求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。例4、设数列满足 解: 对等式两端同加参数得,代入,得相除得即的等比数列,。递推数列特征方程的来源与应用浙江省奉化二中 周 衡()浙江省奉化中学 杨亢尔()递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。关于一阶线性递推数列:其通项公式的求法一般采用如下的参数法1,将递推数列转化为等比数列:设 ,令,即,当时可得知数列是以为公比的等比数列,将代入并整理,得对于二阶线性递推数列,许多文章都采用特征方程法2:设递推公式为其特征方程为,3、 若方程有两相异根、,则4、 若方程有两等根则其中、可由初始条件确定。很明显,如果将以上结论作为此类问题的统一解法直接呈现出来,学生是难以接受的,也是不负责任的。下面我们结合求一阶线性递推数列的参数法,探讨上述结论的“来源”。设,则,令 (*)(3) 若方程组(*)有两组不同的解,则, ,由等比数列性质可得, ,由上两式消去可得.特别地,若方程组(*)有一对共扼虚根通过复数三角形式运算不难求得此时数列的通项公式为其中、可由初始条件求出。(4) 若方程组(*)有两组相等的解,易证此时,则,,即是等差数列,由等差数列性质可知,所以这样,我们通过将递推数列转化为等比(差)数列的方法,求得二阶线性递推数列的通项,若将方程组(*)消去(或)即得此方程的两根即为特征方程的两根,读者不难发现它们的结论是完全一致的,这正是特征方程法求递推数列通项公式的根源所在。例3、 斐波那契数列,求通项公式。解 此数列对应特征方程为即,解得, 设此数列的通项公式为,由初始条件可知,解之得,所以。例4、 已知数列且,求通项公式。解 此数列对应特征方程为即,解得, 设此数列的通项公式为,由初始条件可知,解之得,所以。例4 已知数列且,求通项公式。解 此数列对应特征方程为即,解得, 设此数列的通项公式为,由初始条件可知,解之得,所以。最后我们指出,上述结论在求一类数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的方法更为重要。如对于高阶线性递推数列和分式线性递推数列,我们也可借鉴前面的参数法,求得通项公式。例4、设数列满足 解: 对等式两端同加参数得,代入,得相除得即的等比数列,。参考文献杨亢尔一个数列递推公式和一类应用题的解法数学教学研究,2001.4. 沈文宣. 初等数学研究教程.湖南教育出版社,1996.专心-专注-专业