《平面直角坐标系》章节经典练习题(共9页).doc
精选优质文档-倾情为你奉上平面直角坐标系章节复习考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在平面直角坐标中,点M(2,3)在( )A第一象限 B第二象限 C第三象限 D第四象限2、在平面直角坐标系中,点P(2,1)所在的象限是( )A第一象限 B第二象限 C第三象限 D第四象限3、若点P(a,a-2)在第四象限,则a的取值范围是( )A-2a0 B0a2 Ca2 Da04、点P(m,1)在第二象限内,则点Q(-m,0)在( )Ax轴正半轴上 Bx轴负半轴上 Cy轴正半轴上 Dy轴负半轴上5、若点P(a,b)在第四象限,则点M(ba,ab)在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限6、在平面直角坐标系中,点在第四象限,则实数的取值范围是 7、对任意实数,点一定不在( )A第一象限B第二象限 C第三象限 D第四象限8、如果ab0,且ab0,那么点(a,b)在( )A、第一象限 B、第二象限 C、第三象限, D、第四象限.考点2:点在坐标轴上的特点轴上的点纵坐标为0, 轴上的点横坐标为0.坐标原点(0,0)1、点P(m+3,m+1)在x轴上,则P点坐标为( ) A(0,-2) B(2,0) C(4,0) D(0,-4)2、已知点P(m,2m1)在y轴上,则P点的坐标是 。考点3:考对称点的坐标知识解析:1、关于x轴对称: A(a,b)关于x轴对称的点的坐标为(a,-b)。2、关于y轴对称: A(a,b)关于y轴对称的点的坐标为(-a, b)。3、关于原点对称: A(a,b)关于原点对称的点的坐标为(-a,-b)。1、点(,1)关于轴对称的点的坐标是( )A (,)B (2,1)C(2,)D (1,)2、平面直角坐标系中,与点(2,3)关于原点中心对称的点是( )A (3,2) B (3,2) C (2,3) D (2,3)3、如图,矩形OABC的顶点O为坐标原点,点A在轴上,点B的坐标为(2,1).如果将矩形OABC 绕点O旋转180°,旋转后的图形为矩形OA1B1C1,那么点B1 的坐标( ). A. (2,1) B.(-2,l) C.(-2,-l) D.(2,-1)4、若点A(2,a)关于x轴的对称点是B(b,3)则ab的值是 .5、 在平面直角坐标系中,点A(1,2)关于y轴对称的点为点B(a,2),则a 6、点A(1-a,5),B(3,b)关于y轴对称,则a+b=_7、如果点和点关于轴对称,则的值为 考点4:考平移后点的坐标知识解析:1、 将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y);2、将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)1、 在平面直角坐标系中,将点(2,3)向上平移3个单位,则平移后的点的坐标为_2、在平面直角坐标系中,点P(-1,2)向右平移3个单位长度后的坐标是( )A.(2,2) B.(-4,2) C.(-1,5) D.(-1,-1)3、将点P(2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/,则点P/的坐标为 。4.将点A(-3,-2)先沿轴向上平移5个单位,再沿轴向左平移4个单位得到点A ,则点A' 的坐标是 .5、已知正方形ABCD的三个顶点坐标为A(2,1),B(5,1),D(2,4),现将该正方形向下平移3个单位长度,再向左平移4个单位长度,得到正方形A'B'C'D',则C点的坐标为( )A. (5,4) B. (5,1) C. (1,1) D. (-1,-1)6、在平面直角坐标系中,已知线段AB的两个端点分别是A( 4 ,-1). B(1, 1) 将线段AB平移后得到线段A'B',若点A'的坐标为 (-2 , 2 ) ,则点 B'的坐标为( )yOxA . ( -5 , 4 ) B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1) 7、如图,A,B的坐标为(2,0),(0,1)若将线段平移至,则的值为()A2 B3 C4 D58、在平面直角坐标系中,已知点A(4,0)、B(0,2),现将线段AB向右平移,使A与坐标原点O重合,则B平移后的坐标是 9、以平行四边形ABCD的顶点A为原点,直线AD为x轴建立直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是( )A(3,3) B(5,3) C(3,5) D(5,5) 10、在平面直角坐标系中,ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2)则顶点D的坐标为( ) A(7,2) B. (5,4) C.(1,2) D. (2,1)11、如图所示,在平面直角坐标系中,ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A(3,7) B(5,3) C(7,3) D(8,2)考点5:点到直线的距离点P(x,y)到x轴,y轴的距离分别为|y|和|x|,到原点的距离1、点M(-6,5)到x轴的距离是_,到y轴的距离是_2、已知点P(x,y)在第四象限,且x=3,y=5,则点P的坐标是( )A(-3,5) B(5,-3) C(3,-5) D(-5,3)3、已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P的坐标是 。4、已知点P的坐标(2a,3a6),且点P到两坐标轴的距离相等,则点P的坐标是 考点6:平行于X轴、Y轴的直线的特点平行于x轴的直线上点的纵坐标相同;平行于y轴的直线上点的横坐标相同1、已知点A(1,2),ACX轴, AC=5,则点C的坐标是 _.2、已知点A(1,2),ACy轴, AC=5,则点C的坐标是 _.3、如果点A,点B且AB/轴,则_4、如果点A,点B且AB/轴,则_5、已知:A(1,2),B(x,y),ABx轴,且B到y轴距离为2,则点B的坐标是 .6、已知长方形ABCD中,AB=5,BC=8,并且ABx轴,若点A的坐标为(2,4),则点C的坐标为_.考点7:角平分线的理解第一、三象限角平分线的点横纵坐标相同(y=x);第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)1、若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是( ) A(2,2) B(-2,-2) C(2,2)或(-2,-2) D(2,-2)或(-2,2)2、在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则a ,点的坐标为 。3、当b=_时,点B(-3,|b-1|)在第二、四象限角平分线上.考点8:考特定条件下点的坐标1、若点P(x,y)的坐标满足x+y =xy,则称点P为“和谐点”。请写出一个“和谐点”的坐标,答: .2、如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标不变,纵坐标分别变为原来的,则点A的对应点的坐标是( ).A.(4,3) B.(4,3) C.(2,6) D.(2,3)3、如图,如果士 所在的位置坐标为(-1,-2),相所在的位置坐标为(2,-2),则炮所在位置坐标为 .炮士帅相4、如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( ). A.(-1,1) B.(-2,-1) C.(-3,1) D.(1,-2)5、如图是一台雷达探测相关目标得到的结果,若记图中目标A的位置为(2,90°),则其余各目标的位置分别是多少?考点9:面积的求法(割补法)1、已知:A(3,1),B(5,0),E(3,4),则ABE的面积为_2、如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积。3、如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD(1)求点C,D的坐标及四边形ABDC的面积 (2)在y轴上是否存在一点P,连接PA,PB,使,若存在这样一点,求出点P的坐标,若不存在,试说明理由 4、如图为风筝的图案(1)若原点用字母O表示,写出图中点A,B,C的坐标(2)试求(1)中风筝所覆盖的平面的面积考点10:根据坐标或面积的特点求未知点的坐标1、在直角坐标系中,已知点A(-5,0),点B(3,0),ABC的面积为12,试确定点C的坐标特点2、在平面直角坐标系中,点的坐标为,点的坐标为,点到直线的距离为,且是直角三角形,则满足条件的点有 个3、在平面直角坐标系中,O是坐标原点,已知A点的坐标为(1,1),请你在坐标轴上找出点B,使AOB为等腰三角形,则符合条件的点B共有( ) A6个 B7个 C8个 D9个4、一个长方形在平面直角坐标系中三个顶点的坐标为(1,1)、(1,2)、(3,1),则第四个顶点的坐标为( ) A(2,2) B(3,2) C(3,3) D(2,3)5、在直角坐标系中,已知A(1,0)、B(1,2)、C(2,2)三点坐标,若以 A、B、C、D为顶点的四边形是平行四边形,那么点D的坐标可以是 .(2,0) (0,4)(4,0) (1,4)考点11:考有规律的点的坐标1、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位其行走路线如下图所示O1A1A2A3A4A5A6A7A8A9A10A11A12xy(1)填写下列各点的坐标:A4( , ),A8( , ),A12( , );(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向2、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动即(0,0)(0,1) (1,1) (1,0),且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( ). A(4,O)B.(5,0) C(0,5) D(5,5)3、如图,已知Al(1,0)、A2(1,1)、A3(1,1)、A4(1,1)、A5(2,1)、.则点A2007的坐标为_.4、将杨辉三角中的每一个数都换成分数 ,得到一个如图4所示的分数三角形,称莱布尼茨三角形.若用有序实数对(,)表示第行,从左到右第个数,如(4,3)表示分数.那么(9,2)表示的分数是 .5、如图,在平面直角坐标系中,按一定的规律将OAB逐次变换成OAB,OAB,OAB等。 已知A(1,3) A(2,3)A(4,3)A(8,3),B(2,0) B(4,0)B(8,0)B(16,0).请写出按此规律得到的OAB中,点A与B的坐标, 并求出OAB的面积S。试用含n的代数式来表示按这些规律得到的OAB中,点A、B的坐标及其面积S。P6、如图,将边长为1的正三角形沿轴正方向连续翻转2008次,点依次落在点的位置,则点的横坐标为 奔波在俗世里,不知从何时起,飘来一股清流,逼着每个人优秀。人过四十,已然不惑。我们听过别人的歌,也唱过自己的曲,但谁也逃不过岁月的审视,逃不过现实的残酷。如若,把心中的杂念抛开,苟且的日子里,其实也能无比诗意。借一些时光,寻一处宁静,听听花开,看看花落,翻一本爱读的书,悟一段哲人的赠言,原来,日升月落,一切还是那么美。洗不净的浮沉,留给雨天;悟不透的凡事,交给时间。很多时候,人生的遗憾,不是因为没有实现,而是沉于悲伤,错过了打开心结的时机。有人说工作忙、应酬多,哪有那么多的闲情逸致啊?记得鲁迅有句话:“时间就像海绵里的水,只要挤总是有的。”不明花语,却逢花季。一路行走,在渐行渐远的时光中,命运会给你一次次洗牌,但玩牌的始终是你自己。坦白的说,我们遇到困扰,经常会放大自己的苦,虐待自己,然后落个遍体鳞伤,可怜兮兮地向世界宣告:自己没救了!可是,那又怎样?因为,大多数人关心的都是自己。一个人在成年后,最畅快的事,莫过于经过一番努力后,重新认识自己,改变自己。学会了独自、沉默,不轻易诉说。因为,更多的时候,诉说毫无意义。伤心也好,开心也好,过去了,都是曾经。每个人都要追寻活下去的理由,心怀美好,期待美好,这个世界,就没有那么糟糕。或许,你也会有这样的情节,两个人坐在一起,杂乱无章的聊天,突然你感到无聊,你渴望安静,你想一个人咀嚼内心的悲与喜。透过窗格,发着呆,走着神,搜索不到要附和的词。那一刻,你明白了,这世间不缺一起品茗的人,缺的是一个与你同步的灵魂。没有了期望的懂,还是把故事留给自己吧!每个人都是一座孤岛,颠沛流离,浪迹天涯。有时候,你以为找到了知己,其实,你们根本就是两个世界的人。花,只有在凋零的时候,才懂得永恒就是在落红中重生;人,只有在落魄的时候,才明白力量就是在破土中崛起?.因为防备,因为经历,我们学会了掩饰,掩饰自己内心的某些真实,也在真实中,扬起无懈可击的微笑,解决一个又一个的困扰。人生最容易犯的一个错误,就是把逝去的当作最美的风景。所以,不要活在虚妄的世界,不要对曾经存在假设,不要指望别人太多。有些情,只可随缘,不可勉强;有些人,只可浅交,不可入深;有些话,只可会意,不可说穿。或许,有这么一段情,陪你度过漫长冰冷的寒冬;有那样一个人,给你抑郁的天空画上了温暖的春阳。但时光,总会吹散很多往事,把过去一片片分割,移植到不同区域,并贴上标签,印着不同的定义,也定义着自己的人生态度。正如庄子所说:“唯至人乃能游于世不避,顺人而不失己。”外在的世界,只是一个形式,而你内在的世界,才是真正的江山。丰富自己,取悦自己,随缘,随顺,随境,你的心才会敞开,才会接纳更多的有可能。这样的人生,眼睛里的笑意,尽是踏实与真味。年少时,那些说给蓝天白云的梦想,早已遗忘在风中,再也飞不到岁月的枝头。褪去稚气与懵懂,我更喜欢现在的自己,心里撑着宽阔,却不动声色。即便,一份静谧的从容是多么的难,但我依旧期待。我相信,人生还会很长,还会一直邂逅,但最美的,必是那个明天的自己。专心-专注-专业