欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    [初三数学]初中几何辅助线归纳(共6页).doc

    • 资源ID:14283752       资源大小:142KB        全文页数:6页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    [初三数学]初中几何辅助线归纳(共6页).doc

    精选优质文档-倾情为你奉上初中数学知识归纳-20  添辅助线的规律 (一)添辅助线的目的:    解证几何问题的基本思路就是要利用已知几何条件求得所求几何关系。这往往需要将已知条件与所求条件集中到一个或两个几何关系十分明确的简单的几何图形之中。如一个三角形(特别是直角三角形、等腰三角形),一个平行四边形(特别是矩形、菱形、正方形),一个圆,或两个全等三角形,两个相似三角形之中。这种思路可称为条件集中法。    为了达到条件集中的目标,我们需要将远离的、分散的已知条件和所求条件,通过连线、作线、平移、翻转、旋转等方法来补全或构造一个三角形、一个平行四边形、一个圆、或两个全等三角形、两个相似三角形。以便于运用这些图形的几何关系(性质定理)解题,这就需要添加辅助线。    添加什么样的辅助线,总由以下三方面决定:   由所求决定:问什么,先要作什么。   由已知决定:已知什么,作出什么,并为充分运用已知条件提供的性质定理添加辅助线。   由条件集中的需要决定:为补全或构造几何关系十分明确的一个三角形、一个平行四边形、一个圆,或两个全等三角形、两个相似三角形而添加辅助线。(二)添辅助线的规律:    (1)三角形中:    等腰:常连底边上的中线或高或顶角的平分线(构造两个全等的直角,或便于运用等腰三线合一的性质。如图1)   直角斜边上有中点:连中线(构造两个等腰,或便于运用直角斜边上的中线的特殊性质。如图2)   斜有中点或中线:连中线(构造两个等底同高的等积。如图3);    或自左右两顶点分别作中线的垂线(构造两个全等直角三角形。如图4);    或连中位线、或过一中点作另一边的平行线(构造两个相似比为1:2的相似,或便于运用中位线定理。如图5、6);或延长中位线或中线的一倍(构造两个全等或补全为一个平行四边形。如图7、8)。或延长中线的1/3(构造两个全等或补全为一个平行四边形。如图9)。   有角平分线:过其上某一交点作角两边的垂线(构造两全等的直角。如图10)或一边或两边的平行线(构造一个或两个等腰或一菱形。如图11)。   有角平分线:在此角的一边上自顶点取一段等于另一边并作相关连线(构造两个全等。如图12、13)   有角平分线遇垂线:常延长垂线(构造等腰。如图14)。    (二)梯形:   延长两腰交于一点(构造两相似。如图15),   由小底的一端作一腰的平行线(构造一集中有两腰及上下两底差的和一平行四边形。如图16)。   由小底的两端作大底的垂线(构造两直角和一矩形。如图17)。   有对角线时:由小底的一端作另一对角线的平行线(构造一集中有两对角线及上下两底和的和一平行四边形。如图18)。   连小底一端与另一腰中点并与大腰的延长线相交(构造两全等及一与梯形等高等积的。如图19)。   过一腰的中点作另一腰的平行线(构造两全等及与梯形等积的平行四边形。如图20)。   过小底的中点分别作两腰的平行线(构造一集中有两腰及上下两底差的和两个平行四边形。如图21)。    (三)圆:   有弦:连过弦端点的半径,连垂直于弦的直径或弦心距(构造直角,便于运用垂径定理、勾股定理、锐角三角函数解题);或作过弦一端点的切线及相关的圆心角、圆周角(便于运用弦切角定理。如图22)。   有直径及垂直直径的弦或半弦,连结弦与直径的端点(构造三个相似的直角,便于运用直角的性质及射影定理。如图23)。   有圆内接四边形:连对角线(构造较多相等的圆周角。如图24);或延长四边形的某一边(构造与内对角相等的外角。如图25)。   圆外有切线:连过切点的半径或直径(构造垂直关系);或作过切点的弦及相关的圆心角、圆周角(便于运用弦切角定理。如图26)。   圆外有两条相交切线:连过切点的半径,并作切线交点与圆心的连线(构造两全等的直角三角形);或作过交点和加以的割线(便于运用切线割线定理);或连结两切点(构造一等腰、三对全等的直角、被切线交点与圆心的连线垂直平分的弦,便于运用等腰、直角、全等以及射影定理。如图27)。   有相交弦或相交于圆外的割线切线:连结不同弦的端点或不同割线在圆上的交点(构造相似,便于运用比例线段及外角定理。如图28、29、30)。   两圆相交:作连心线、公共弦,甚至两圆心到公共弦两端点的连线(构造两等腰、补全一筝形,便于运用连心线垂直平分公共弦的定理。如图31)。   两圆外切:作连心线及内、外公切线、连切点、连半径(构造一集中有两条弦及外公切线长的直角、一集中有两圆半径、半径之和及外公切线长的直角梯形。如图32)。   两圆内切:作连心线及外公切线(便于运用连心线与公切线的垂直关系。如图33)。   两圆外离:作连心线及个公切线或内公切线,并过小圆圆心作公切线的平行线(构造一集中连心线长、公切线长、两圆半径差或和的直角。如图34、35)。初中几何常见辅助线作法歌诀汇编2009-04-04 12:55初中几何常见辅助线作法歌诀汇编人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线初中几何常见辅助线作法歌诀人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。 解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。 分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。 几何常见辅助线作法歌诀2009-01-11 20:25几何常见辅助线作法歌诀人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便初中常用的几何辅助线做法辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。 解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。 分析综合方法选,困难再多也会减辅助线有二种情况: (1)按定义添辅助线: 如证明二直线垂直可延长使它们 相交后证交角为90°, 证线段倍半关系可倍线段取中点或半线段加倍, 证角的倍半关系也可类似添辅助线(2)按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。 举例如下: 平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。 出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线; 出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线 出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形。 当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等 如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。 当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型 当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:2;30度角直角三角形三边比为1:2:3进行证明半圆上的圆周角 出现直径与半圆上的点,添90度的圆周角 出现90度的圆周角则添它所对弦-直径平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样下面提供三角形中位线基本图形的几种添线图形(色线为辅助线)补充几句: 我认为添辅助线是有规律的!如西瓦定理结论很复杂,但出现了相比线段重叠在一直线上的特征,而这正是平行线形相似三角形的性质!因此我们可根据平行线形相似三角形进行补图:添平行线得平行线型相似三角形进行证明。又如几何问题中出现多个中点时可添加面积等分线或补完整三角形中位线基本图形进行证明(如证顺次连结任意四边形各边中点的四边形为平行四边形);出现线段倍半关系除根据定义加倍取半外(也是规律么)还有下面几种情形:若倍线段是直角三角形斜边则必须 添直角三角形斜边上的中线得直角三角形斜边上的中线的基本图形;但若与倍线段有公共端点的某线段带一个中点或半线段的端点是另一线段的中点则必添加三角形中位线基本图形无疑! 专心-专注-专业

    注意事项

    本文([初三数学]初中几何辅助线归纳(共6页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开