低压电容无功补偿原理(共25页).doc
精选优质文档-倾情为你奉上无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1. 延时投切方式 延时投切方式即人们熟称的"静态"补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如cos超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到cos不满足要求时,如cos滞后且<0.95,那么将一组电容器投入,并继续监测cos如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如cos<0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300s,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到cos0.95,迅速将电容器组逐一投入,而在投入期间,此时电网可能已是容性负载即过补偿了,控制器则控制电容器组逐一切除,周而复始,形成震荡,导致系统崩溃。是否能形成振荡与负载的性质有密切关系,所以说这个参数需要根据现场情况整定,要在保证系统安全的情况下,再考虑补偿效果。 2. 瞬时投切方式 瞬时投切方式即人们熟称的"动态"补偿方式,应该说它是半导体电力器件与数字技术综合的技术结晶,实际就是一套快速随动系统,控制器一般能在半个周波至1个周波内完成采样、计算,在2个周期到来时,控制器已经发出控制信号了。通过脉冲信号使晶闸管导通,投切电容器组大约20-30毫秒内就完成一个全部动作,这种控制方式是机械动作的接触器类无法实现的。动态补偿方式作为新一代的补偿装置有着广泛的应用前景。现在很多开关行业厂都试图生产、制造这类装置且有的生产厂已经生产出很不错的装置。当然与国外同类产品相比从性能上、元器件的质量、产品结构上还有一定的差距。 动态补偿的线路方式 (1)LC串接法原理如图1所示 这种方式采用电感与电容的串联接法,调节电抗以达到补偿无功损耗的目的。从原理上分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为零。从元件的选择上来说,根据补偿量选择1组电容器即可,不需要再分成多路。既然有这么多的优点,应该是非常理想的补偿装置了。但由于要求选用的电感量值大,要在很大的动态范围内调节,所以体积也相对较大,价格也要高一些,再加一些技术的原因,这项技术到目前来说还没有被广泛采用或使用者很少。 (2)采用电力半导体器件作为电容器组的投切开关,较常采用的接线方式如图2。图中BK为半导体器件,C1为电容器组。这种接线方式采用2组开关,另一相直接接电网省去一组开关,有很多优越性。 作为补偿装置所采用的半导体器件一般都采用晶闸管,其优点是选材方便,电路成熟又很经济。其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以保护措施要完善。当解决了保护问题,作为电容器组投切开关应该是较理想的器件。动态补偿的补偿效果还要看控制器是否有较高的性能及参数。很重要的一项就是要求控制器要有良好的动态响应时间,准确的投切功率,还要有较高的自识别能力,这样才能达到最佳的补偿效果。 当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令),此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并人线路运行。需要强调的是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件的损坏,半导体器件应该是无涌流投切。当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关断。关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽快放电,以备电容器再次投入。 元器件可以选单项晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态接触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的耐压及电流要合理选择,散热器及冷却方式也要考虑周全。 3.混合投切方式 实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。这种方式在一定程度上可做到优势互补,但就其控制技术,目前还见到完善的控制软件,该方式用于通常的网络如工矿、小区、域网改造,比起单一的投切方式拓宽了应用范围,节能效果更好。补偿装置选择非等容电容器组,这种方式补偿效果更加细致,更为理想。还可采用分相补偿方式,可以解决由于线路三相不平行造成的损失。 4. 在无功功率补偿装置的应用方面,选择那一种补偿方式,还要依电网的状况而定,首先对所补偿的线路要有所了解,对于负荷较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能效果明显。对于负荷相对平稳的线路应采用静态补偿方式,也可使用动态补偿装置。一般电焊工作时间均在几秒钟以上,电动机启动也在几秒钟以上,而动态补偿的响应时间在几十毫秒,按40毫秒考虑则从40毫秒到5秒钟之内是一个相对的稳态过程,动态补偿装置能完成这个过程。 二、无功功率补偿控制器 无功功率补偿控制器有三种采样方式,功率因数型、无功功率型、无功电流型。选择那一种物理控制方式实际上就是对无功功率补偿控制器的选择。控制器是无功补偿装置的指挥系统,采样、运算、发出投切信号,参数设定、测量、元件保护等功能均由补偿控制器完成。十几年来经历了由分立元件-集成线路-单片机-DSP芯片一个快速发展的过程,其功能也愈加完善。就国内的总体状况,由于市场的需求量很大,生产厂家也愈来愈多,其性能及内在质量差异很大,很多产品名不符实,在选用时需认真对待。在选用时需要注意的另一个问题就是国内生产的控制器其名称均为"XXX无功功率补偿控制器",名称里出现的"无功功率"的含义不是这台控制器的采样物理量。采样物理量取决于产品的型号,而不是产品的名称。 1.功率因数型控制器 功率因数用cos表示,它表示有功功率在线路中所占的比例。当cos=1时,线路中没有无功损耗。提高功率因数以减少无功损耗是这类控制器的最终目标。这种控制方式也是很传统的方式,采样、控制也都较容易实现。 * "延时"整定,投切的延时时间,应在10s-120s范围内调节 "灵敏度"整定,电流灵敏度,不大于0-2A 。 * 投入及切除门限整定,其功率因数应能在0.85(滞后)-0.95(超前)范围内整定。 * 过压保护设量 * 显示设置、循环投切等功能 这种采样方式在运行中既要保证线路系统稳定、无振荡现象出现,又要兼顾补偿效果,这是一对矛盾,只能在现场视具体情况将参数整定在较好的状态下工作。即使调整的较好,也无法祢补这种方式本身的缺陷,尤其是在线路重负荷时。举例说明:设定投入门限;cos=0.95(滞后)此时线路重载荷,即使此时的无功损耗已很大,再投电容器组也不会出现过补偿,但cos只要不小于0.95,控制器就不会再有补偿指令,也就不会有电容器组投入,所以这种控制方式建议不做为推荐的方式。 2. 无功功率(无功电流)型控制器 无功功率(无功电流)型的控制器较完善的解决了功率因数型的缺陷。一个设计良好的无功型控制器是智能化的,有很强的适应能力,能兼顾线路的稳定性及检测及补偿效果,并能对补偿装置进行完善的保护及检测,这类控制器一般都具有以下功能: * 四象限操作、自动、手动切换、自识别各路电容器组的功率、根据负载自动调节切换时间、谐波过压报警及保护、线路谐振报警、过电压保护、线路低电流报警、电压、电流畸变率测量、显示电容器功率、显示cos、U、I、S、P、Q及频率。 由以上功能就可以看出其控制功能的完备,由于是无功型的控制器,也就将补偿装置的效果发挥得淋漓尽致。如线路在重负荷时,那怕cos已达到0.99(滞后),只要再投一组电容器不发生过补,也还会再投入一组电容器,使补偿效果达到最佳的状态。采用DSP芯片的控制器,运算速度大幅度提高,使得富里叶变换得到实现。当然,不是所有的无功型控制器都有这么完备的功能。国内的产品相对于国外的产品还存在一定的差距。 3. 用于动态补偿的控制器 对于这种控制器要求就更高了,一般是与触发脉冲形成电路一并考虑的,要求控制器抗干扰能力强,运算速度快,更重要的是有很好的完成动态补偿功能。由于这类控制器也都基于无功型,所以它具备静态无功型的特点。 目前,国内用于动态补偿的控制器,与国外同类产品相比有较大的差距,一是在动态响应时间上较慢,动态响应时间重复性不好;二是补偿功率不能一步到位,冲击电流过大,系统特性容易漂移,维护成本高、造成设备整体投资费用高。另外,相应的国家标准也尚未见到,这方面落后于发展。 三、滤波补偿 由于现代半导体器件、滤波补偿系统应用愈来愈普遍,功率也更大,但它的负面影响就是产生很大的非正弦电流。使电网的谐波电压升高,畸变率增大,电网供电质量变坏。 如果供电线路上有较大的谐波电压,尤其5次以上,这些谐波将被补偿装置放大。电容器组与线路串联谐振,使线路上的电压、电流畸变率增大,还有可能造成设备损坏,再这种情况下补偿装置是不可使用的。最好的解决方法就是在电容器组串接电抗器来组成谐波滤波器。滤波器的设计要使在工频情况下呈容性,以对线路进行无功补偿,对于谐波则为感性负载,以吸收部分谐波电流,改善线路的畸变率。增加电抗器后,要考虑电容端电压升高的问题。 滤波补偿装置即补偿了无功损耗又改善了线路质量,虽然成本提高较多,但对于谐波成分较大的线路还是应尽量考虑采用,不能认为装置一时不出问题就认为没有问题存在。很多情况下,采用五次、七次、十一次或高通滤波器可以在补偿无功功率的同时,对系统中的谐波进行消除。电动机属于感性负载.感性负载对功率因数滞后,电容对功率因数超前,若投电容多了功率因数超前.电压升高,向电网输送无功功率,对电网造成危险,供电部门要罚款.所以不能投得太多.所谓无功功率通俗地讲就是不消耗电能的用电设备所消耗的功率。比如把一只电容器接入交流电路中,电路就会对电容器进行充放电,这样就引成电流,充电时电容器畜存电能,放电时电容器把电能又还给电源,这样电容器这个用电设备本身并不消耗电能,然而它却有功率(功率等于电压乘以电流强度),这就是无功功率,电容器虽然不消耗电能,但是因为有电流,所以电力线路上会消耗电能(电线都有电阻),对供电的电源变压器来说更是一种负担,因为变压器的容量(它能提供的功率)是有限的,无功功率会占用变压器的容量,使正常供电受到限止。同样,把一只电感器接入交流电路,也会产生无功功率。不过电容器使电流相位超前,而电感器使电流相位滞后,它们的作用正好相反,可以相互抵消。一般的用电设备都是电感性的,如工厂里的电动机,它会产生感性无功功率,不但使电力线白白消耗电能,增加电力线路的负担,更是白白占用电源变压器的容量,是非常有害的。这时在电动机上并联电容器,使感性负载与容性负载的作用相互抵消,这对电力线路和变压器来说就没有无功功率的影响了。无功补偿装置说白了就是配套的电容器(由许多只电容器并联而成),它由自动控制设备自动接入电路,既不会补偿不足,也不会补偿过头。低压电容补尝柜的原理节能原理: 大多数用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率, 在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cos,其计算公式为: cos=P/S=P/(P2+Q2)1/2 在电网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,如何使得配电系统功率因数尽可能接近于1,使得电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。降低配电系统的电能损耗,是配电系统节能的途径之一。 技术特点: 采用无功补偿通常有二种方式,集中自动补偿,和就地固定补偿。集中自动补偿调节灵活,但不能解决线损的问题。随着国家经济的发展和人民生活水平的提高,大量的居住楼盘、高档商场、宾馆、办公楼等民用建筑在城市中拔地而起,使城市用电量快速增长。但是,在这些民用建筑场所内使用的多为单相电感性负荷,因其自身功率因数较低,在电网中滞后无功功率的比重较大。为保证降低电网中的无功功率,提高功率因数,保证有功功率的充分利用,提高系统的供电效率和电压质量,减少线路损耗,降低配电线路的成本,节约电能,通常在低压供配电系统中装设电容器无功补偿装置。本文主要通过设计工作中所遇到的具体工程对无功自动补偿的方式和安装位置作出了分析和比较。 1分相自动补偿的必要性 无功自动补偿按性质分为三相电容自动补偿和分相电容自动补偿。 三相电容自动补偿适用于三相负载平衡的供配电系统。因三相回路平衡,回路中无功电流相同,所以在补偿时,调节无功功率参数的信号取自三相中的任意一相,根据检测结果,三相同时投切可保证三相电压的质量。三相电容自动补偿适用于有大量的三相用电设备的厂矿企业中。 在民用建筑中大量使用的是单相负荷,照明、空调等由于负荷变化的随机性大,容易造成三相负载的严重不平衡,尤其是住宅楼在运行中三相不平衡更为严重。由于调节补偿无功功率的采样信号取自三相中的任意一相,造成未检测的两相要么过补偿,要么欠补偿。如果过补偿,则过补偿相的电压升高,造成控制、保护元件等用电设备因过电压而损坏;如果欠补偿,则补偿相的回路电流增大,线路及断路器等设备由于电流的增加而导致发热被烧坏。这种情况下用传统的三相无功补偿方式,不但不节能,反而浪费资源,难以对系统的无功补偿进行有效 补偿,补偿过程中所产生的过、欠补偿等弊端更是对整个电网的正常运行带来了严重的危害。 据有关资料介绍,某地综合楼是集商场、银行、办公、车库、宾馆为一体的一类高层建筑,总建筑面积32万m2。主要用电设备有空调机组、水泵、风机及照明灯具等,其中照明灯具均为单相负荷,功率因数在045075之间。低压有功计算负荷2815kW,其中,照明用电有功负荷10865kW,其它负荷基本为空调、风机、水泵、电梯等三相负荷。补偿前无功功率3182kvar,若整体功率因数补偿到092,需补偿1982kvar,补偿后无功功率1200kvar。原设计采用低压配电室并联电容器组三相集中自动补偿,工程竣工投入使用后,经常出现仪器、灯具等用电设备烧坏或不能正常使用等情况,影响正常经营和工作。经现场测试,发现低压馈线回路三相负荷不平衡,差距很大,电流差异大,最大相电流差为900A;检测母线电压,三相母线电压有的高达260V,有的低到190V。通过分析是三相电容自动补偿造成的结果。 对于三相不平衡及单相配电系统采用分相电容自动补偿是解决上述问题的一种较好的办法,其原理是通过调节无功功率参数的信号取自三相中的每一相,根据每相感性负载的大小和功率因数的高低进行相应的补偿,对其它相不产生相互影响,故不会产生欠补偿和过补偿的情况。 该装置的控制模块和数据采集模块采用新型单片机和大规模集成电路,开关模块采用大功率晶闸管,实现电容器组的零电压投入和零电流切除,无合闸浪涌电流冲击,无火花和谐波干扰。产品特点如下: (1)实现了控制模块的数字化和智能化,开关执行单元无触点,确保了控制精度和运行的可靠性; (2)全自动分相、分级按需补偿; (3)可灵活设定过压、欠压、欠流延时等参数,具有完善的越限报警和过压、欠压、缺相、缺零、谐波越限保护缩闭功能,保证系统安全运行; (4)实时数字式测量、显示电网中的主要参数:功率因数、电压、电流、谐波电压及电流、有功功率及电度、无功功率及电度等; (5)带有谐波分析,测量总的谐波失真(THD)以及131次谐波电压及电流,为治理谐波提供准确的数字依据; (6)采用“自愈式”电容器,具有使用寿命长、可靠性强、温升小、无需专门散热装置等优点; (7)具有数据采集功能和标准的通信接口(RS232),可实现远程实时监测和计算机联网管理; (8)采用模块化结构设计,易于维护和升级。 从上述产品的功能可以看出,智能三相自动无功补偿能自动检测各相负载的功率因数,同时自动分相投入各相所需的电容补偿量,以使各相的无功功率补偿达到最佳状态,对于大量使用单相用电负荷,易产生三相不平衡的用电单位如住宅小区、宾馆、饭店、大型商场等民用建筑的配电系统有改善功率因数、提高电网效率、改善电压质量、节约用电、增大变压器有功容量等显著效果,较大程度满足了“电网绿化”的要求。 2分组电容自动补偿的应用在低压电网中大量的用电设备为电感性,尤其是在大面积、大开间的商场、办公楼等日常生活和办公场所,大都会采用发光效果好的荧光灯进行人工照明。荧光灯具有光效好、寿命长、无污染等特点,属绿色光源。目前,民用建筑工程中大量使用电感型镇流器荧光灯,它具有成本低、寿命长、维修工作量少、投资少等优点,但其启动时间长,功率因数低,约为0506,自身损耗大,加大了供配电系统网络损耗,造成了能源的浪费。 通过电容补偿的方式来解决大面积商场、办公楼的感性负荷功率因数低的问题是目前设计中常用的方法。 我们在设计中通常的做法有两种:在变配电所设置集中高压或低压补偿柜,对系统前端进行补偿,虽能满足供电部门对并网功率因数的要求,但对以下各级分支电路不作补偿,因此低压配电线路中无功电流大,从而造成线路截面和配电开关容量不能减小,且不能保证整个低压系统的供电质量;另一种做法是在每台用电设备或每盏照明灯具内设置电容器个别单独进行补偿,这种方式效果较好,对于厂矿企业使用的单台大容量用电设备比较适用,但对于大型商场等民用建筑来说,补偿投资成本太大,性价比低,安装分散,造成后期维修量大、维修困难,且电容器利用率低,实际应用并不理想,所以很少采用。 在目前低压补偿电容器技术和制造质量、自动投切装置有了很大提高的前提下,笔者认为在这类民用建筑的配电系统中分组设置补偿电容,即根据建筑使用功能分区,用电较集中、电气设备功率因数较低的配电箱处设置电容补偿装置较为适宜。 分组补偿可提高设备利用率,减少配电系统容量 视其功率S,由此可知在有功功率不变的前提下,提高功率因数可降低无功功率,减小配电系统的容量。 当功率因数由065提高到092时,设备利用率为: ×100×1002935 即补偿后设备利用率提高了2935。 在选用型号及截面相同的电缆时,减少了线路损耗 根据公式:I,线损PI2R,则: P2R2R ×100×1005008 即补偿后线路损耗降低了5008。 2分组补偿的可行性 下面结合工程应用举例说明分组补偿的可行性。 某地新华书店大楼由商场、书店营业厅、餐饮、宾馆、地下车库、办公室组成,属一类高层,功能较复杂。其中16层为书店营业厅,单层面积约2800m2(标准层,每层均相同),其照明采用电感类荧光灯,功率因数较低。方案设计时只在变电所设集中补偿柜. 16层配电照明箱由变配电所采用一回路供电,开关为1250A,空气绝缘母线槽选用一段1250A,每层配电照明箱进线开关选用250A;分组每层设电容补偿比在变配电所设集中补偿柜电容器总容量要高出20左右。但减少了开关、供电线路的投资,这部分费用相对于电容器的投资要高许多。每层在配电照明箱处设电容补偿并不增加配电箱的数量,只需将配电照明箱的尺寸加大,电容器装于箱内,这样也节省了低压配电室内电容补偿柜的占地面积。另因为补偿电容配置了智能控制器,产品模块化,具有数据采集功能和标准的通信接口(RS232),可实现远程实时监测和计算机联网管理,便于检测、维护和升级。 从上述举例可看出,根据各层配电照明箱的设置分组装设电容补偿的方式较好地解决了集中和个别设置补偿造成的线路中无功电流增大、相应配电线路截面及开关容量加大和补偿投资成本大、安装分散、后期维修量大、维修困难等问题。对于大型商场、写字楼等大量使用低功率因数设备的民用建筑设计应根据具体情况采用分组设置电容补偿方式比较合理电容的作用滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001-0.lpF的电容,以滤除高频及脉冲干扰。 耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。 电容的重要性汹涌的河水流入到湖泊中,再让它流出来,那就显得平静而柔和了.电容就应该是充当了湖泊的作用吧.让电流更纯净没有杂波. 所谓电容,就是容纳和释放电荷的电子元器件。电容的基本工作原理就是充电放电,当然还有整流、振荡以及其它的作用。另外电容的结构非常简单,主要由两块正负电极和夹在中间的绝缘介质组成,所以电容类型主要是由电极和绝缘介质决定的。在计算机系统的主板、插卡、电源的电路中,应用了电解电容、纸介电容和瓷介电容等几类电容,并以电解电容为主。 纸介电容是由两层正负锡箔电极和一层夹在锡箔中间的绝缘蜡纸组成,并拆叠成扁体长方形。额定电压一般在63V250V之间,容量较小,基本上是pF(皮法)数量级。现代纸介电容由于采用了硬塑外壳和树脂密封包装,不易老化,又因为它们基本工作在低压区,且耐压值相对较高,所以损坏的可能性较小。万一遭到电损坏,一般症状为电容外表发热。 瓷介电容是在一块瓷片的两边涂上金属电极而成,普遍为扁圆形。其电容量较小,都在pF(皮微法)数量级。又因为绝缘介质是较厚瓷片,所以额定电压一般在13kV左右,很难会被电损坏,一般只会出现机械破损。在计算机系统中应用极少,每个电路板中分别只有24枚左右。 电解电容的结构与纸介电容相似,不同的是作为电极的两种金属箔不同(所以在电解电容上有正负极之分,且一般只标明负极),两电极金属箔与纸介质卷成圆柱形后,装在盛有电液的圆形铝桶中封闭起来。因此,如若电容器漏电,就容易引起电解液发热,从而出现外壳鼓起或爆裂现象。电解电容都是圆柱形(图1),体积大而容量大,在电容器上所标明的参数一般有电容量(单位:微法)、额定电压(单位:伏特),以及最高工作温度(单位:)。其中,耐压值一般在几伏特几百伏特之间,容量一般在几微法几千微法之间,最高工作温度一般为85105。指明电解电容的最高工作温度,就是针对其电解液受热后易膨胀这一特点的。所以,电解电容出现外壳鼓起或爆裂,并非只有漏电才出现,工作环境温度过高同样也会出现。 1.电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。 2.电容既不产生也不消耗能量,是储能元件。 3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。 4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡. 5.在接地线上,为什么有的也要通过电容后再接地咧? 答:在直流电路中是抗干扰,把干扰脉冲通过电容接地(在这次要作用是隔直电路中的电位关系);交流电路中也有这样通过电容接地的,一般容量较小,也是抗干扰和电位隔离作用. 6.电容补尝功率因数是怎么回事? 答:因为在电容上建立电压首先需要有个充电过程,随着充电过程,电容上的电压逐步提高,这样就会先有电流,后建立电压的过程,通常我们叫电流超前电压90度(电容电流回路中无电阻和电感元件时,叫纯电容电路)。电动机、变压器等有线圈的电感电路,因通过电感的电流不能突变的原因,它与电容正好相反,需要先在线圈两端建立电压,后才有电流(电感电流回路中无电阻和电容时,叫纯电感电路),纯电感电路的电流滞后电压90度。由于功率是电压乘以电流,当电压与电流不同时产生时(如:当电容器上的电压最大时,电已充满,电流为0;电感上先有电压时,电感电流也为0),这样,得到的乘积(功率)也为0!这就是无功。那么,电容的电压与电流之间的关系正好与电感的电压与电流的关系相反,就用电容来补偿电感产生的无功,这就是无功补偿的原理。 1、滤波 2、电容既不产生也不消耗能量,是储能元件 3、抗干扰和电位隔离 4、在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡 5、通交隔直(交流通过,直流隔断) 6、电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件 7、补尝功率因数电容器就是两片不相连的金属板.电容器在电子线路中的作用一般概括为:通交流、阻直流。 电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。 在集成电路、超大规模集成电路已经大行其道的今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可见一斑。作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电,并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。电容器还常常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。 计时:电容器与电阻器配合使用,确定电路的时间常数。 调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。 整流:在预定的时间开或者关半闭导体开关元件。 储能:储存电能,用于必须要的时候释放。例如相机闪光灯,加热设备等等。 如今某些电容的储能水平已经接近锂电池的水准,一个电容储存的电能可以供一个手机使用一天。我厂现已停产,只是生活用电,不知还要不要投入电容补偿,照明负荷很小2KW不到,手工投入就已过补偿了,有人说要补变压器的损耗,不知是不是,请哪位帮忙指教一下,不胜感激节能灯本身带有小电容,无需投入补偿功率因数已经达到0.98,同时变压器损耗是有,但是比较小,投入无功补偿后还会更加耗电,因为电容器也是需要吸收电能的.就这么简单电力设备运行时,一般消耗电网中的电能,由于根据电气设备的分为电热、电感及电容型之分,其运行时的总电能为有功和无功这两部分组成,而有功部分是我们平时设备由电能转化为形式的能量这部分,而无功部分则是用电设备消耗电网中的电能转化为热能的这部分,由于一般电气使用电动机为主,其主要反映为电感设备,如与其配备的机械设备较匹配时,其输入近似为输出,如匹配差异较大时,则反应无功较大,根据 功率因数=有功功率/无功功率 一般电业规定功率因数为低压-0.85以上 高压-0.9以上 为了克服无功损耗,就要采用无功补偿装置来解决,工业上采用同步电机和同步调相机。 或采用移相电容器。 目前大多数采用移相电容器为主。 低压照明用户采用大多阻性负载,无需无功补偿。低压侧补充无功,可以使变压器输送的无功功率减少,减少变压器的负载率,可以减少变压器及输电线的损耗。什么叫无功率补偿屏?是起什么作用的?交流电在通过纯电阻的时候,电能都转成了热能,而在通过纯容性或者纯感性负载的时候,并不做功。也就是说没有消耗电能,即为无功功率。当然实际负载,不可能为纯容性负载或者纯感性负载,一般都是混合性负载,这样电流在通过它们的时候,就有部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿。 电网中的电力负荷如电动机、变压器等,大部分属于感性电抗,在运行过程中需要向这些设备提供相应的无功功率。在电网中安装并联电容器、同步调相机等容性设备以后,可以供给感性电抗消耗的部分无功功率小电网电源向感性负荷提供无功功率。也即减少无功功率在电网中的流动,因此可以降低输电线路因输送无功功率造成的电能损耗,改善电网的运行条件。这种做法称为无功补偿。 配电网中常用的无功补偿方式有哪些? 无功补偿可以改善电压质量,提高功率因数,是电网采用的节能措施之一。配电网中常用的无功补偿方式为:在系统的部分变、配电所中,在各个用户中安装无功补偿装置;在高低压配电线路中分散安装并联电容机组;在配电变压器低压侧和车间配电屏间安装并联电容器以及在单台电动机附近安装并联电容器,进行集中或分散的就地补偿。 1、就地补偿 对于大型电机或者大功率用电设备宜装设就地补偿装置。就地补偿是最经济、最简单以及最见效的补偿方式。在就地补偿方式中,把电容器直接接在用电设备上,中间只加串熔断器保护,用电设备投入时电容器跟着一起投入,切除时一块切除,实现了最方便的无功自动补偿,切除时用电设备的线圈就是电容器的放电线圈。 2、分散补偿 当各用户终端距主变较远时,宜在供电末端装设分散补偿装置,结合用户端的低压补偿,可以使线损大大降低,同时可以兼顾提升末端电压的作用。 3、集中补偿 变电站内的无功补偿,主要是补偿主变对无功容量的需求,结合考虑供电压区内的无功潮流及配电线路和用户的无功补偿水平来确定无功补偿容量。35KV变电站一般按主变容量的10%-15%来确定;110KV变电站可按15%-20%来确定。 4、调容方式的选择 (1)长期变动的负荷 对于建站初期负荷较小,以后负荷逐渐增大的情况,组装设无载可调容电容器组。户外安装时可选用可调容集合式电容器;户内安装时可选用可调容柜式电容器装置。其基本原理为将电容器按二进制方式分成二组,通过分接开关或隔离开关选择投切组合,可以实现三档容量可调。随着负荷的改变,可以人工断电后改变投切组合满足某一时间段的无功平衡。这种场合可以装设无功自动调容装置,该装置可以满足无人值守综合自动化的要求。 (2)短时段内负荷频繁变化的场合 该场合宜装可快速跟踪的瞬态无功补偿装置。由于电容器每次投切前却必须保证电容器没有残存的电荷,而电容器放电即使通过放电线圈亦需要数秒的时间,所以高压瞬态无功补偿装置(也称SVC)一般都是固定补偿最大容量的电容器,同时并联一组容量可调的电抗器,通过快速调整电抗器的输出无功,从而达到无功瞬态平衡的目的。电抗器的调整技术主要有可控硅控制空心并联电抗器及直流偏磁调感两种方式,其中以前者较优,但价格较高。 什么条件下需要计算无功补偿?应注意些什么? 100KVA以下的才不需要计算无功,100KVA的也要计算,这是国家规定的。变电站的无功补偿一般原则是就地补偿,所以大型的高电压的变电所一般不需要无功补偿,不远距离输送无功,只有在110KV及以下的变电所10KV母线上才需要无功补偿。 (1)在轻负荷时不允许过补偿,否则由于无功补偿容量过大,会使功率因数超前,向电网倒送无功,是不经济的; (2)在不同功率因数的条件下,每千乏补偿容量取得的补偿效益是不相同的。功率因数愈高时,每千乏补偿容量对减少无功功率在输送过程中造成的损耗的作用,将相应变小。如提高后的功率因数接近1,则补偿设备的投资将增加,投资的效益将减小。因此通常情况下,将功率因数提高到0.95左右为好。这样亦体现了合理补偿,以取得最佳技术经济效益的原则。 什么叫无功补偿装置?有哪些? 总的来说“无功补偿装置”就是个无功电源。 一般电业规定功率因数为低压0.85以上,高压0.9以上。为了克服无功损耗,就要采用无功补偿装置来解决。 电力系统中现有的无功补偿设备有无功静止式补偿装置和无功动态补偿装置两类,前者包括并联电容器和并联电抗器,后者包括同步补偿机(调相机)和静止型无功动态补偿装置(SVS)。 并联电抗器的功能是: 1)吸收容性电流,补偿容性无功,使系统达到无功平衡; 2)可削弱电容效应,限制系统的工频电压升高及操作过电压。其不足之处是容量固定的并联电抗器,当线路传输功率接近自然功率时,会使线路电压过分降低,且造成附加有功损耗,但若将其切除,则线路在某些情况下又可能因失去补偿而产生不能允许的过电压。 改进方法是采用可控电抗器,它借助控制回路直流的励磁改变铁心的饱和度(即工作点),从而达到平滑调节无功输出的目的。 工业上采用 1.同步电机和同步调相机; 2.采用移相电容器; 目前大多数采用移相电容器为主。 无功补偿对于降低线损有哪些作用? 电网的损耗分为管理线损和技术线损。管理线损通过管理和组织上的措施来降低;技术线损通过各种技术措施来降低。无功补偿是利用技术措施降低线损的重要措施之一,在有功功率合理分配的同时,做到无功功率的合理分布。按照就近的原则安排减少无功远距离输送。对各种方式进行线损计算制定合理的运行方式;合理调整和利用补偿设备提高功率因数。 1、提高负荷的功率因数 提高负荷的功率因数,可以减少发电机送出的无功功率和通过线路、变压器传输的无功功率,使线损大为降低,而且还可以改善电压质量、提高线路和变压器的输送能力。 2、装设无功补偿设备 应当根据电网中无功负荷及无功分布情况合理选择无功补偿容量和确定补偿容量的分布,以进一步降低电网损耗。 农村低压客户的用电现状以及无功补偿在低压降损中的作用有哪些? 90年代以前,农村低压用电以居民生活用电为主,其负荷主要是照明用白炽灯,不仅用电量少而且负荷性质基本是纯电阻性(COS1),而低压动力用户的负荷功率因数虽然较低,但其用电量占总售电量的比例较小,故影响不大。近些年来,由于各种现代家用电器的迅速普及和大量使用,居民生活用电不仅用电量有了较大的增长,更重要的是其负荷性质有了很大的改变。与此同时,低压动力客户电量增长迅速,近几年已经占到了农村总用电量比重的6070,主要以纺织行业、机械加工为主,而且动力客户的用电量明显呈现出继续增长趋势。这些动力客户,其设备自然功率因数较低(COS0.60.7),且经常处于低功率因数运行状况。 目前,纯居民生活用电的农村综合变已经不存在了,绝大多数农村综合变的非普工业用电占到60以上(小集镇公用变和排灌变除外)。由于低压动力客户都没有进行无功就地补偿,网改时由于资金不足等原因也未考虑低压无功补偿问题,导致农村综合变的功率因数很低,基本上在0.60.7之间,即无功功率在配电线路上引起的有功损耗实际