初二数学动点问题归类复习(共15页).doc
精选优质文档-倾情为你奉上初二数学动点问题归类复习(含例题、练习及答案)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。一、等腰三角形类:因动点产生的等腰三角形问题例1:(2013年上海市虹口区中考模拟第25题)如图1,在RtABC中,A90°,AB6,AC8,点D为边BC的中点,DEBC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且PDQ90°(1)求ED、EC的长;(2)若BP2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若PDF为等腰三角形,求BP的长图1 备用图思路点拨1第(2)题BP2分两种情况2解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系3第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ解答:(1)在RtABC中, AB6,AC8,所以BC10在RtCDE中,CD5,所以,(2)如图2,过点D作DMAB,DNAC,垂足分别为M、N,那么DM、DN是ABC的两条中位线,DM4,DN3由PDQ90°,MDN90°,可得PDMQDN因此PDMQDN所以所以,图2 图3 图4如图3,当BP2,P在BM上时,PM1此时所以如图4,当BP2,P在MB的延长线上时,PM5此时所以(3)如图5,如图2,在RtPDQ中,在RtABC中,所以QPDC由PDQ90°,CDE90°,可得PDFCDQ因此PDFCDQ当PDF是等腰三角形时,CDQ也是等腰三角形如图5,当CQCD5时,QNCQCN541(如图3所示)此时所以如图6,当QCQD时,由,可得所以QNCNCQ(如图2所示)此时所以不存在DPDF的情况这是因为DFPDQPDPQ(如图5,图6所示)图5 图6考点伸展:如图6,当CDQ是等腰三角形时,根据等角的余角相等,可以得到BDP也是等腰三角形,PBPD在BDP中可以直接求解二、直角三角形:因动点产生的直角三角形问题例2:(2008年河南省中考第23题)如图1,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0)(1)试说明ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度当其中一个动点到达终点时,他们都停止运动设M运动t秒时,MON的面积为S 求S与t的函数关系式; 设点M在线段OB上运动时,是否存在S4的情形?若存在,求出对应的t值;若不存在请说明理由;在运动过程中,当MON为直角三角形时,求t的值图1思路点拨:1第(1)题说明ABC是等腰三角形,暗示了两个动点M、N同时出发,同时到达终点2不论M在AO上还是在OB上,用含有t的式子表示OM边上的高都是相同的,用含有t的式子表示OM要分类讨论3将S4代入对应的函数解析式,解关于t的方程4分类讨论MON为直角三角形,不存在ONM90°的可能解答:(1)直线与x轴的交点为B(3,0)、与y轴的交点C(0,4)RtBOC中,OB3,OC4,所以BC5点A的坐标是(-2,0),所以BA5因此BCBA,所以ABC是等腰三角形(2)如图2,图3,过点N作NHAB,垂足为H在RtBNH中,BNt,所以如图2,当M在AO上时,OM2t,此时定义域为0t2如图3,当M在OB上时,OMt2,此时定义域为2t5 图2 图3把S4代入,得解得,(舍去负值)因此,当点M在线段OB上运动时,存在S4的情形,此时如图4,当OMN90°时,在RtBNM中,BNt,BM ,所以解得如图5,当OMN90°时,N与C重合,不存在ONM90°的可能所以,当或者时,MON为直角三角形 图4 图5考点伸展:在本题情景下,如果MON的边与AC平行,求t的值如图6,当ON/AC时,t3;如图7,当MN/AC时,t2.5 图6 图7三、平行四边形问题:因动点产生的平行四边形问题例3:(2010年山西省中考第26题)在直角梯形OABC中,CB/OA,COA90°,CB3,OA6,BA分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD5,OE2EB,直线DE交x轴于点F求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由 图1 图2思路点拨:1第(1)题和第(2)题蕴含了OB与DF垂直的结论,为第(3)题讨论菱形提供了计算基础2讨论菱形要进行两次(两级)分类,先按照DO为边和对角线分类,再进行二级分类,DO与DM、DO与DN为邻边解答:(1)如图2,作BHx轴,垂足为H,那么四边形BCOH为矩形,OHCB3在RtABH中,AH3,BA,所以BH6因此点B的坐标为(3,6)(2) 因为OE2EB,所以,E(2,4)设直线DE的解析式为ykxb,代入D(0,5),E(2,4),得 解得,所以直线DE的解析式为(3) 由,知直线DE与x轴交于点F(10,0),OF10,DF如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点此时点M的坐标为(5,),点N的坐标为(5,)如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8)如图5,当DO、DM为菱形的邻边时,NO5,延长MN交x轴于P由NPODOF,得,即解得,此时点N的坐标为 图3 图4 考点伸展如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形 图5 图6四、相似三角形:因动点产生的相似三角形问题例4:(2013年苏州中考28题)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动在运动过程中,EBF关于直线EF的对称图形是EBF设点E、F、G运动的时间为t(单位:s)(1)当t= s时,四边形EBFB为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B与点O重合?若存在,求出t的值;若不存在,请说明理由 思路点拨:(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)EBF与FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在解答:(1)若四边形EBFB为正方形,则BE=BF,即:10t=3t,解得t=2.5;(2)分两种情况,讨论如下:若EBFFCG,则有,即,解得:t=2.8;若EBFGCF,则有,即,解得:t=142(不合题意,舍去)或t=14+2当t=2.8s或t=(14+2)s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似(3)假设存在实数t,使得点B与点O重合如图,过点O作OMBC于点M,则在RtOFM中,OF=BF=3t,FM=BCBF=63t,OM=5,由勾股定理得:OM2+FM2=OF2,即:52+(63t)2=(3t)2解得:t=;过点O作ONAB于点N,则在RtOEN中,OE=BE=10t,EN=BEBN=10t5=5t,ON=6,由勾股定理得:ON2+EN2=OE2,即:62+(5t)2=(10t)2解得:t=3.93.9,不存在实数t,使得点B与点O重合考点伸展:本题为运动型综合题,考查了矩形性质、轴对称、相似三角形的判定性质、勾股定理、解方程等知识点题目并不复杂,但需要仔细分析题意,认真作答第(2)问中,需要分类讨论,避免漏解;第(3)问是存在型问题,可以先假设存在,然后通过推导出互相矛盾的结论,从而判定不存在拓展练习:1、如图1,梯形ABCD中,AD BC,B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。当t= 时,四边形是平行四边形; 当t= 时,四边形是等腰梯形. (1题图) 备用图2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 。 (2题图) (3题图)3、如图,在中,点是的中点,过点的直线从与重合的位置开始,绕点作逆时针旋转,交边于点过点作交直线于点,设直线的旋转角为(1)当 度时,四边形是等腰梯形,此时的长为 ;当 度时,四边形是直角梯形,此时的长为 ;(2)当时,判断四边形是否为菱形,并说明理由ACBEDNM图3ABCDEMN图24、在ABC中,ACB=90°,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E.CBAED图1NM(1)当直线MN绕点C旋转到图1的位置时,求证:ADCCEB;DE=ADBE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,且EF交正方形外角的平行线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由 6、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t. 求(1) PAB为等腰三角形的t值;(2) PAB为直角三角形的t值;(3) 若AB=5且ABM=45 °,其他条件不变,直接写出 PAB为直角三角形的t值。7、如图1,在等腰梯形中,是的中点,过点作交于点,.求:(1)求点到的距离;(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由ADEBFC图4(备用)ADEBFC图5(备用)ADEBFC图1图2ADEBFCPNM图3ADEBFCPNM(第25题)8、如图,已知中,厘米,厘米,点为的中点(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇? (8题图) (9题图)9、如图所示,在菱形ABCD中,AB=4,BAD=120°,AEF为正三角形,点E、F分别在菱形的边BCCD上滑动,且E、F不与BCD重合(1)证明不论E、F在BCCD上如何滑动,总有BE=CF;(2)当点E、F在BCCD上滑动时,分别探讨四边形AECF和CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值10、如图,在AOB中,AOB=90°,OA=OB=6,C为OB上一点,射线CDOB交AB于点D,OC=2点P从点A出发以每秒个单位长度的速度沿AB方向运动,点Q从点C出发以每秒2个单位长度的速度沿CD方向运动,P、Q两点同时出发,当点P到达到点B时停止运动,点Q也随之停止过点P作PEOA于点E,PFOB于点F,得到矩形PEOF以点Q为直角顶点向下作等腰直角三角形QMN,斜边MNOB,且MN=QC设运动时间为t(单位:秒)(1)求t=1时FC的长度(2)求MN=PF时t的值(3)当QMN和矩形PEOF有重叠部分时,求重叠(阴影)部分图形面积S与t的函数关系式(4)直接写出QMN的边与矩形PEOF的边有三个公共点时t的值参考答案:1、解:(1)要使四边形PQCD为平行四边形,则PD=CQ,AD=18cm,即18-t=2t,解得:t=6;(2)设经过ts,四边形PQCD是等腰梯形过Q点作QEAD,过D点作DFBC,四边形PQCD是等腰梯形,PQ=DC又ADBC,B=90°,AB=EQ=DFEQPFDCFC=EP=BC-AD=21-18=3又AE=BQ=21-2t,EP=t-AE,EP=AP-AE=t-(21-2t)=3得:t=8经过8s,四边形PQCD是等腰梯形2、5;3、解:(1)30,1;60,1.5;(2)当=900时,四边形EDBC是菱形.=ACB=900,BC/ED. CE/AB, 四边形EDBC是平行四边形在RtABC中,ACB=900,B=600,BC=2, A=300.AB=4,AC=2. AO= .在RtAOD中,A=300,AD=2.BD=2. BD=BC. 又四边形EDBC是平行四边形,四边形EDBC是菱形 4、解:(1) ACD=ACB=90° CAD+ACD=90° BCE+ACD=90° CAD=BCE AC=BC ADCCEB ADCCEB CE=AD,CD=BE DE=CE+CD=AD+BE (2) ADC=CEB=ACB=90° ACD=CBE 又AC=BC ACDCBE CE=AD,CD=BE DE=CE-CD=AD-BE(3) 当MN旋转到图3的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE等) ADC=CEB=ACB=90° ACD=CBE, 又AC=BC, ACDCBE, AD=CE,CD=BE, DE=CD-CE=BE-AD. 5、解:(1)正确证明:在上取一点,使,连接,是外角平分线, , (ASA) (2)正确 证明:在的延长线上取一点使,连接 四边形是正方形, (ASA) 6、解:解:(1)作AEBM于E。则AE=3,AB=5,BE=(AB²-AE²)=4 MP=t, BP=9-t若AP=AB,9-t=2×4t=1若PA=PB,BP/(1/2AB)=AB/BP(9-t)²=1/2*5*5t=9-5/2(9+5/2舍去)若BA=BP,|9-t|=5t=4 、14综上,t=1、4、9-5/2、14(2)若APB=90°9-t=4t=5若PAB=90°BP/BA=BA/BE(9-t)/5=5/4t=11/4综上,t=5、11/4。7、解:(1)如图1,过点作于点 为的中点, 在中, 即点到的距离为 图1ADEBFCG(2)当点在线段上运动时,的形状不发生改变 , 同理 如图2,过点作于,图2ADEBFCPNMGH 则在中,的周长= 当点在线段上运动时,的形状发生改变,但恒为等边三角形当时,如图3,作于,则类似, 是等边三角形,此时, 当时,如图4,这时 此时,当时,如图5, 则又 因此点与重合,为直角三角形 此时,综上所述,当或4或时,为等腰三角形 8、解:AQCDBP解:(1)秒, 厘米,厘米,点为的中点, 厘米又厘米, 厘米, 又, , , , 又,则,点,点运动的时间秒, 厘米/秒。(2)设经过秒后点与点第一次相遇, 由题意,得,解得秒点共运动了厘米 ,点、点在边上相遇,经过秒点与点第一次在边上相遇9、解:(1)证明:如图,连接AC,四边形ABCD为菱形,BAD=120°,BAE+EAC=60°,FAC+EAC=60°,BAE=FAC。BAD=120°,ABF=60°。ABC和ACD为等边三角形。ACF=60°,AC=AB。ABE=AFC。在ABE和ACF中,BAE=FAC,AB=AC,ABE=AFC,ABEACF(ASA)。BE=CF。 (2)四边形AECF的面积不变,CEF的面积发生变化。理由如下:由(1)得ABEACF,则SABE=SACF。S四边形AECF=SAEC+SACF=SAEC+SABE=SABC,是定值。作AHBC于H点,则BH=2,。由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短故AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又SCEF=S四边形AECFSAEF,则此时CEF的面积就会最大SCEF=S四边形AECFSAEF。CEF的面积的最大值是。【考点】菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,垂直线段的性质。【分析】(1)先求证AB=AC,进而求证ABC、ACD为等边三角形,得ACF =60°,AC=AB,从而求证ABEACF,即可求得BE=CF。(2)由ABEACF可得SABE=SACF,故根据S四边形AECF=SAEC+SACF=SAEC+SABE=SABC即可得四边形AECF的面积是定值。当正三角形AEF的边AE与BC垂直时,边AE最短AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,根据SCEF=S四边形AECFSAEF,则CEF的面积就会最大。10、考点:相似形综合题 分析:(1)根据等腰直角三角形,可得,OF=EP=t,再将t=1代入求出FC的长度;(2)根据MN=PF,可得关于t的方程6t=2t,解方程即可求解;(3)分三种情况:求出当1t2时;当2t时;当t3时;求出重叠(阴影)部分图形面积S与t的函数关系式;(4)分M在OE上;N在PF上两种情况讨论求得QMN的边与矩形PEOF的边有三个公共点时t的值解答:解:(1)根据题意,AOB、AEP都是等腰直角三角形,OF=EP=t,当t=1时,FC=1;(2)AP=t,AE=t,PF=OE=6tMN=QC=2t6t=2t解得t=2故当t=2时,MN=PF;(3)当1t2时,S=2t24t+2;当2t时,S=t2+30t32;当t3时,S=2t2+6t;(4)QMN的边与矩形PEOF的边有三个公共点时t=2或点评:考查了相似形综合题,涉及的知识有等腰直角三角形的性质,图形的面积计算,函数思想,方程思想,分类思想的运用,有一定的难度专心-专注-专业