欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    《机械优化设计》复习题-答案要点(共13页).doc

    • 资源ID:14317741       资源大小:371KB        全文页数:13页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《机械优化设计》复习题-答案要点(共13页).doc

    精选优质文档-倾情为你奉上机械优化设计复习题解答一、填空题1、用最速下降法求f(X)=100(x2- x12) 2+(1- x1) 2的最优解时,设X(0)-0.5,0.5T,第一步迭代的搜索方向为 -47,-50T。2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高低高 趋势。5、包含n个设计变量的优化问题,称为 n 维优化问题。6、函数 的梯度为HX+B。7、设G为n×n对称正定矩阵,若n维空间中有两个非零向量d0,d1,满足(d0)TGd1=0,则d0、d1之间存在共轭关系。8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。9、对于无约束二元函数,若在点处取得极小值,其必要条件是 ,充分条件是 (正定 。10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。11、用黄金分割法求一元函数的极小点,初始搜索区间,经第一次区间消去后得到的新区间为 -2.36 10 。12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。13、牛顿法的搜索方向dk= ,其计算量大 ,且要求初始点在极小点 附近 位置。14、将函数f(X)=x12+x22-x1x2-10x1-4x2+60表示成的形式 。15、存在矩阵H,向量 d1,向量 d2,当满足d1THd2=0,向量 d1和向量 d2是关于H共轭。16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r数列,具有单调递增特点。17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求最优步长。18、与负梯度成锐角的方向为函数值(下降)的方向,与梯度成直角的方向为函数值(变化为零)的方向。19、对于一维搜索,搜索区间为,中间插入两个点,则缩短后的搜索区间为()20、由于确定(搜索方向)和最佳步长的方法不一致,派生出不同的无约束优化问题数值求解方法。1、 导出等式约束极值条件时,将等式约束问题转换为无约束问题的方法有(消元法)和(拉格朗日法)。2、 优化问题中的二元函数等值线,从外层向内层函数值逐渐变(小)。3、 优化设计中,可行设计点位(可行域内)内的设计点。4、 方向导数定义为函数在某点处沿某一方向的(变化率)5、 在n维空间中互相共轭的非零向量个数最多有(n)个。6、 外点惩罚函数法的迭代过程可在可行域外进行,惩罚项的作用是随便迭代点逼近(边界)或等式约束曲面。二、选择题1、下面C方法需要求海赛矩阵。A、最速下降法B、共轭梯度法C、牛顿型法D、DFP法2、对于约束问题根据目标函数等值线和约束曲线,判断为 ,为 。DA内点;内点 B. 外点;外点 C. 内点;外点 D. 外点;内点3、内点惩罚函数法可用于求解B优化问题。A 无约束优化问题 B只含有不等式约束的优化问题 C 只含有等式的优化问题 D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为a,b,中间插入两个点a1、b1,a1<b1,计算出f(a1)<f(b1),则缩短后的搜索区间为D。A a1,b1 B b1,b C a1,b D a,b1 5、D不是优化设计问题数学模型的基本要素。A设计变量 B约束条件 C目标函数 D 最佳步长6、变尺度法的迭代公式为xk+1=xk-kHkf(xk),下列不属于Hk必须满足的条件的是C 。A. Hk之间有简单的迭代形式 B.拟牛顿条件C.与海塞矩阵正交 D.对称正定7、函数在某点的梯度方向为函数在该点的A。A、最速上升方向 B、上升方向 C、最速下降方向 D、下降方向8、下面四种无约束优化方法中,D在构成搜索方向时没有使用到目标函数的一阶或二阶导数。A 梯度法 B 牛顿法 C 变尺度法 D 坐标轮换法9、设为定义在凸集R上且具有连续二阶导数的函数,则在R上为凸函数的充分必要条件是海塞矩阵G(X)在R上处处B。A 正定 B 半正定 C 负定 D 半负定10、下列关于最常用的一维搜索试探方法黄金分割法的叙述,错误的是D,假设要求在区间a,b插入两点1、2,且1<2。A、其缩短率为0.618B、1=b-(b-a)C、1=a+(b-a) D、在该方法中缩短搜索区间采用的是外推法。11、与梯度成锐角的方向为函数值A方向,与负梯度成锐角的方向为函数值 B方向,与梯度成直角的方向为函数值 C方向。A、上升B、下降C、不变D、为零12、二维目标函数的无约束极小点就是 B。A、等值线族的一个共同中心 B、梯度为0的点C、全局最优解 D、海塞矩阵正定的点13、最速下降法相邻两搜索方向dk和dk+1必为 B 向量。A 相切 B 正交C 成锐角D 共轭14、下列关于内点惩罚函数法的叙述,错误的是A。A 可用来求解含不等式约束和等式约束的最优化问题。 B 惩罚因子是不断递减的正值C初始点应选择一个离约束边界较远的点。 D 初始点必须在可行域内三、问答题(看讲义)1、试述两种一维搜索方法的原理,它们之间有何区答:搜索的原理是:区间消去法原理 区别:(1)、试探法:给定的规定来确定插入点的位置,此点的位置确定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法 (2)、插值法:没有函数表达式,可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为原来函数的近似值。这种方法称为插值法,又叫函数逼近法。2、惩罚函数法求解约束优化问题的基本原理是什么? 答,基本原理是将优化问题的不等式和等式约束函数经过加权转化后,和原目标函数结合形成新的目标函数惩罚函数å求解该新目标函数的无约束极值,以期得到原问题的约束最优解3、试述数值解法求最佳步长因子的基本思路。 答 主要用数值解法,利用计算机通过反复迭代计算求得最 佳步长因子的近似值4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点。答:最速下降法此法优点是直接、简单,头几步下降速度快。缺点是收敛速度慢,越到后面收敛越慢。牛顿法优点是收敛比较快,对二次函数具有二次收敛性。缺点是每次迭代需要求海塞矩阵及其逆矩阵,维数高时及数量比较大。 5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义。6、什么是共轭方向?满足什么关系?共轭与正交是什么关系? 四、解答题1、试用梯度法求目标函数f(X)=1.5x12+0.5x22- x1x2-2x1的最优解,设初始点x(0)=-2,4T,选代精度=0.02(迭代一步)。解:首先计算目标函数的梯度函数 , 计算当前迭代点的 梯度向量值 梯度法的搜索方向为 , 因此在迭代点x(0) 的搜索方向为12,6T 在此方向上新的迭代点为: = 把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数 令 ,可以求出当前搜索方向上的最优步长 新的迭代点为当前梯度向量的长度, 因此继续进行迭代。第一迭代步完成。2、试用牛顿法求f( X )=(x1-2)2+(x1-2x2)2的最优解,设初始点x(0)=2,1T。解1:(注:题目出题不当,初始点已经是最优点,解2是修改题目后解法。)牛顿法的搜索方向为,因此首先求出当前迭代点x(0) 的梯度向量、海色矩阵及其逆矩阵 不用搜索,当前点就是最优点。解2:上述解法不是典型的牛顿方法,原因在于题目的初始点选择不当。以下修改求解题目的初始点,以体现牛顿方法的典型步骤。 以非最优点x(0)=1,2T作为初始点,重新采用牛顿法计算牛顿法的搜索方向为,因此首先求出当前迭代点x(0) 的梯度向量、以及海色矩阵及其逆矩阵梯度函数: 初始点梯度向量: 海色矩阵:海色矩阵逆矩阵: 当前步的搜索方向为:新的迭代点位于当前的搜索方向上 := 把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数 令 ,可以求出当前搜索方向上的最优步长 新的迭代点为当前梯度向量的长度, 因此继续进行迭代。第二迭代步:因此不用继续计算,第一步迭代已经到达最优点。这正是牛顿法的二次收敛性。对正定二次函数,牛顿法一步即可求出最优点。3、设有函数 f(X)=x12+2x22-2x1x2-4x1,试利用极值条件求其极值点和极值。解:首先利用极值必要条件 找出可能的极值点: 令 求得,是可能的极值点。 再利用充分条件正定(或负定)确认极值点。 因此正定, 是极小点,极值为f(X*)=-84、求目标函数f( X )=x12+x1x2+2x22 +4x1+6x2+10的极值和极值点。解法同上5、试证明函数 f( X )=2x12+5x22 +x32+2x3x2+2x3x1-6x2+3在点1,1,-2T处具有极小值。解: 必要条件: 将点1,1,-2T带入上式,可得充分条件 40正定。因此函数在点1,1,-2T处具有极小值6、给定约束优化问题 min f(X)=(x1-3)2+(x2-2)2 s.t. g1(X)=x12x2250 g2(X)=x12x240 g3(X)= x10 g4(X)=x20 验证在点Kuhn-Tucker条件成立。解:首先,找出在点起作用约束:g1(X) 0g2(X) 0g3(X) 2g4(X) 1因此起作用约束为g1(X)、g2(X)。然后,计算目标函数、起作用约束函数的梯度,检查目标函数梯度是否可以表示为起作用约束函数梯度的非负线性组合。 , 求解线性组合系数 得到 均大于0因此在点Kuhn-Tucker条件成立7、设非线性规划问题 用K-T条件验证为其约束最优点。解法同上8、已知目标函数为f(X)= x1+x2,受约束于:g1(X)=-x12+x20g2(X)=x10写出内点罚函数。解: 内点罚函数的一般公式为 其中: r(1)>r(2) >r(3) >r(k) >0 是一个递减的正值数列r(k)Cr(k-1), 0C1因此 罚函数为:9、已知目标函数为f(X)=( x1-1)2+(x2+2)2受约束于:g1(X)=-x2-x1-10g2(X)=2-x1-x20g3(X)=x10g4(X)=x20试写出内点罚函数。解法同上10、如图,有一块边长为6m的正方形铝板,四角截去相等的边长为x的方块并折转,造一个无盖的箱子,问如何截法(x取何值)才能获得最大容器的箱子。试写出这一优化问题的数学模型以及用MATLAB软件求解的程序。11、某厂生产一个容积为8000cm3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB软件求解的程序。12、一根长l的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序。13、求表面积为300m2的体积最大的圆柱体体积。试写出这一优化设计问题的数学模型以及用MATLAB软件求解的程序。14、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大。写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解(写出M文件和求解命令)。15、已知梯形截面管道的参数是:底边长度为c,高度为h,面积A=64516mm2,斜边与底边的夹角为,见图1。管道内液体的流速与管道截面的周长s的倒数成比例关系(s只包括底边和两侧边,不计顶边)。试按照使液体流速最大确定该管道的参数。写出这一优化设计问题的数学模型。并用matlab软件的优化工具箱求解(写出M文件和求解命令)。16、某电线电缆车间生产力缆和话缆两种产品。力缆每米需用材料9kg,3个工时,消耗电能4kW·h,可得利润60元;话缆每米需用材料4kg,10个工时,消耗电能5kW·h,可得利润120元。若每天材料可供应360kg,有300个工时消耗电能200kW·h可利用。如要获得最大利润,每天应生产力缆、话缆各多少米?写出该优化问题的数学模型以及用MATLAB软件求解的程序。专心-专注-专业

    注意事项

    本文(《机械优化设计》复习题-答案要点(共13页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开