欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高中数学人教版选修2-1-2.1.1曲线与方程-教案(系列二)(共8页).doc

    • 资源ID:14321662       资源大小:1.05MB        全文页数:7页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高中数学人教版选修2-1-2.1.1曲线与方程-教案(系列二)(共8页).doc

    精选优质文档-倾情为你奉上211曲线与方程【学情分析】:学生在必修模块中已经学过直线与圆的方程,熟练掌握了直线的方程、圆的方程的常用形式,能解决直线与圆的有关问题,对解析几何的研究方法与思路有一定的了解,这些对本节学习有很大帮助。【教学目标】:知识与技能1、 了解曲线上的点与方程的解之间的一一对应关系,2、 领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理;过程与方法1. 在形成概念的过程中,培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想,以及坐标法、待定系数法等常用的数学方法;2. 体会研究解析几何的基本思想和解决解析几何问题的方法.情感态度与价值观 培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神【教学重点】:理解曲线与方程的有关概念与相互联系【教学难点】:定义中规定两个关系(纯粹性和完备性) 【课前准备】:多媒体、实物投影仪 【教学过程设计】:教学环节教学活动设计意图一复习、引入1、问题: (1)求如图所示的直线的方程,并说明曲线上的点与方程之间的关系;观察、思考,求得方程为引导学生分析:(1)如果点是这条直线上的任意一点,则它到两坐标轴的距离相等,即,那么它的坐标是方程的解。(2)如果是方程的解,即,则以这个解为坐标的点到两坐标轴的距离相等,它一定在这条直线上。通过学生已熟悉的两种曲线引入,有利于学生在已有知识基础上开展学习;提出新问题,创设情景,引发学习兴趣。二复习、引入 (2) 仿照(1)说明:以为圆心,以r为半径的圆与方程的关系 设M(xo,yo)是圆上任一点,则它到圆心的距离等于 半径 ,即,即:,这就是说,(xo,yo)是此方程的 解 ; 如果(xo,yo)是方程的解,则可以推得 ,即点M(xo,yo)到圆心的距离等于半径 ,点M在 圆 上。 引导学生在前一个例子的基础上类比归纳,得出结论,使他们理解几何中的“形”与代数中的“数”的统一,为“依形判数”和“就数论形”的相互转化奠定了扎实的基础这正体现了解析几何的基本思想,对解析几何教学有着深远的影响 三讲解定义 1在直角坐标系中,如果某曲线C上的点与一个二元方程的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解;(纯粹性)(2)以这个方程的解为坐标的点都是曲线上的点(完备性)那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线2.讨论:曲线可以看作是由点组成的集合,记作C;一个关于x,y的二元方程的解可以作为点的坐标,因而二元方程的解也描述了一个点集,记作F 请大家思考:如何用集合C和点集F间的关系来表达“曲线的方程”和“方程的曲线”定义中的两个关系,进而重新表述以上定义关系(1)指集合C是点集F的子集,关系(2)指点集F是点集合C的子集这样根据集合的性质,可以用集合相等的概念来定义“曲线的方程”与“方程的曲线”,即:3练习:下列方程表示如图所示的直线C,对吗?为什么?(1);(2);(3)|x|-y=0.上题供学生思考,口答解:方程(1)、(2)、(3)都不是表示曲线C的方程第(1)题中曲线C上的点不全都是方程的解,如点(-1,-1)等,即不符合“曲线上的点的坐标都是方程的解”这一结论;第(2)题中,尽管“曲线C上的坐标都是方程的解”,但以方程的解为坐标的点不全在曲线C上,如点(2,-2)等,即不符合“以方程的解为坐标的点都在曲线上”这一结论;第(3)题中,类似(1)(2)得出不符合“曲线上的点的坐标都是方程的解”,“以方程的解为坐标的点都在曲线上”事实上,(1)(2)(3)中各方程表示的曲线应该是下图的三种情况:上述概念是本课的重点和难点,让学生自己通过讨论归纳出来,老师再说清楚这两大性质(纯粹性和完备性)的含义,使学生初步理解这个概念通过引导学生运用集合的表述,使学生对曲线和方程的关系的理解得到加深和强化,在记忆中上也趋于简化通过反倒加深对定义的理解。四例题1例1:证明与两条坐标轴的距离的积是常数的点的轨迹方程是证明:(1)如图,设是轨迹上的任意一点,因为点M与x轴的距离为,与y轴的距离为,所以: ,即是方程的根; (2)设点的坐标是方程的根,则:,即 ,而、是点到横轴、纵轴的距离,因此点到这两条直线的距离的积是常数k,点是曲线上的点。由(1)(2)可知,是与两条坐标轴的距离的积为常数的点的轨迹方程通过例题巩固定义。五练习1教科书P37 练习1、2六小结1、 曲线与方程的关系2、 如何证明、判断曲线为方程的曲线,方程为曲线的方程3、 曲线上的点所组成的集合与方程的解所组成的集合有什么关系?五、作业教科书习题2.1 A组1、2练习与测试:1如果曲线C上的点满足方程F(x,y)=0,则以下说法正确的是( )A.曲线C的方程是F(x,y)=0B.方程F(x,y)=0的曲线是CC.坐标满足方程F(x,y)=0的点在曲线C上D.坐标不满足方程F(x,y)=0的点不在曲线C上2.判断下列结论的正误,并说明理由.(1)过点A(3,0)且垂直于x轴的直线的方程为x=0; (2)到x轴距离为2的点的直线方程为y=-2;(3)到两坐标轴的距离乘积等于1的点的轨迹方程为xy=1;(4)ABC的顶点A(0,-3),B(1,0),C(-1,0),D为BC中点,则中线AD的方程为x=0 3.方程(3x-4y-12)·log2(x+2y)-3=0的曲线经过点A(0,-3)、B(0,4)、C()、D(4,0)中的( )A.0个 B.1个 C.2个 D.3个4.已知点A(-3,0),B(0,),C(4,-),D(3sec, tan),其中在曲线上的点的个数为( )A.1 B.2 C.3 D.45证明动点P(x,y)到定点M(-a,0)的距离等于a(a0)的轨迹方程是 6.如果两条曲线的方程F1(x,y)=0和F2(x,y)=0,它们的交点M(x0,y0),求证:方程F1(x,y)+F2(x,y)=0表示的曲线也经过M点.(为任意常数)练习与测试解答:1.分析:判定曲线和方程的对应关系,必须注意两点:(1)曲线上的点的坐标都是这个方程的解,即直观地说“点不比解多”称为纯粹性;(2)以这个方程的解为坐标的点都在曲线上,即直观地说“解不比点多”,称为完备性,只有点和解一一对应,才能说曲线的方程,方程和曲线解:由已知条件,只能说具备纯粹性,但不一定具备完备性.故选D 2.分析:判断所给问题的正误,主要依据是曲线的方程及方程的曲线的定义,即考查曲线上的点的纯粹性和完备性.解:(1)满足曲线方程的定义.结论正确(2)因到x轴距离为2的点的直线方程还有一个;y=2,即不具备完备性.结论错误.(3)到两坐标轴的距离的乘积等于1的点的轨迹方程应为x·y=1,即xy=±1.所给问题不具备完备性结论错误(4)中线AD是一条线段,而不是直线,x=0(-3y0),所给问题不具备纯粹性.结论错误.3.分析:方程表示的两条直线3x-4y-12=0和x+2y-9=0,但应注意对数的真数大于0,x+2y0 解:由对数的真数大于0,得x+2y0.A(0,-3)、C()不合要求将B(0,4)代入方程检验,不合要求.将D(4,0)代入方程检验,合乎要求.故选B.4.分析:由曲线上的点与方程的解的关系,只要把点的坐标代入方程,若满足这个方程,说明这是这个方程的解,这个点就在该方程表示的曲线上.解:将点A(-3,0)、B(0,)、C(4,-)、D(3sec, tan)代入方程检验,只有点A和点B满足方程.故选B.5仿照课本例子,分两种情况易证6.分析:只要将M点的坐标代入方程.F1(x,y)+F2(x,y)=0,看点M的坐标是否满足方程即可证明:M(x0,y0)是曲线F1(x,y)=0和F2(x,y)=0的交点,F1(x0,y0)=0,F2(x0,y0)=0.F1(x0,y0)+F2(x0,y0)=0(R)M(x0,y0)在方程F1(x,y)+F2(x,y)=0所表示的曲线上.评述:方程F1(x,y)+F2(x,y)=0也称为过曲线F1(x,y)=0和F2(x,y)=0的交点的曲线系方程专心-专注-专业

    注意事项

    本文(高中数学人教版选修2-1-2.1.1曲线与方程-教案(系列二)(共8页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开