欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数字图像的退化与复原(共13页).doc

    • 资源ID:14323501       资源大小:718.50KB        全文页数:13页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数字图像的退化与复原(共13页).doc

    精选优质文档-倾情为你奉上一、实验目的1掌握数字图像的存取与显示方法。2理解数字图像运动模糊、高斯模糊以及其他噪声引起模糊(图像降质现象)的物理本质。3掌握matlab的开发环境。4掌握降质图像的逆滤波复原和维纳滤波复原方法。 二、实验原理此实验是对数字图像处理课程的一个高级操作。在深入理解与掌握数字图像退化的基础理论上,利用逆滤波与维纳滤波方法对数字图像进行复原。图像的退化 数字图像在获取过程中,由于光学系统的像差、光学成像衍射、成像系统的非线性畸变、成像过程的相对运动、环境随机噪声等原因,图像会产生一定程度的退化。图像的复原 图像复原是利用图像退化现象的某种先验知识,建立退化现象的数学模型,再根据模型进行反向的推演运算,以恢复原来的景物图像。因而图像复原可以理解为图像降质过程的反向过程。图像降质的数学模型图像复原处理的关键问题在于建立退化模型。输入图像f(x,y)经过某个退化系统后输出的是一幅退化的图像。为了讨论方便,把噪声引起的退化即噪声对图像的影响一般作为加性噪声考虑。原始图像f(x,y)经过一个退化算子或退化系统H(x,y)的作用,再和噪声n(x,y)进行叠加,形成退化后的图像g(x,y)。图1表示退化过程的输入和输出关系,其中H(x,y)概括了退化系统的物理过程,就是要寻找的退化数学模型。f(x,y)H(x,y)+n (x,y)g(x,y)图1 图像的退化模型数字图像的图像恢复问题可以看作是:根据退化图像g(x,y)和退化算子H(x,y)的形式,沿着反向过程去求解原始图像f(x,y)。图像退化的过程可以用数学表达式写成如下形式:g(x,y)=Hf(x,y)+n(x,y) (1)在这里,n(x,y)是一种统计性质的信息。在实际应用中,往往假设噪声是白噪声,即它的频谱密度为常熟,并且与图像不相关。在对退化系统进行了线性系统和空间不变系统的近似之后,连续函数的退化模型在空域中可以写成:g(x,y)=f(x,y)*h(x,y)+n(x,y) (2)在频域中可以写成:G(u,v)=F(u,v)H(u,v)+N(u,v) (3)其中,G(u,v)、F(u,v)、N(u,v)分别是退化图像g(x,y)、原图像f(x,y)、噪声信号n(x,y)的傅立叶变换;H(u,v)是系统的点冲击响应函数h(x,y)的傅立叶变换,称为系统在频率域上的传递函数。可见,图像复原实际上就是已知g(x,y)求f(x,y)的问题或已知G(u,v)求F(u,v)的问题,它们的不同之处在于一个是空域,一个是频域。逆滤波逆滤波是非约束复原的一种。非约束复原是指在已知退化图像g的情况下,根据对退化系统H和n的一些了解和假设,估计出原始图像,使得某种事先确定的误差准则为最小。由于g=Hf+n (4)我们可得:n=g-Hf (5)逆滤波法是指在对n没有先验知识的情况下,可以依据这样的最有准则,即寻找一个,使得H在最小二乘方误差的意义下最接近g,即要使n的模或范数(norm)最小: (6)上式的极小值为: (7)如果我们在求最小值的过程中,不做任何约束,由极值条件可以解出为: (8)对上式进行傅立叶变换得: (9)可见,如果知道g(x,y)和h(x,y),也就知道了G(u,v)和H(u,v).根据上式,即可得出F(u,v),再经过反傅立叶变换就能求出f(x,y)。 逆滤波是最早应用于数字图像复原的一种方法,并用此方法处理过由漫游者、探索者等卫星探索发射得到的图像。维纳滤波维纳滤波是最小二乘类约束复原的一种。在最小二乘类约束复原中,要设法寻找一个最有估计,使得形式为的函数最小化。求这类问题的最小化,常采用拉格朗日乘子算法。也就是说,要寻找一个,使得准则函数 (10)为最小。求解得到 (11)式中,。如果用图像f和噪声的相关矩阵Rf和Rn表示Q,就可以得到维纳滤波复原方法。具体维纳滤波复原方法的原理请参考相关图书。三、实验仪器和设备1、PC机1台2、原始coins图像文件3、matlab编程软件四、实验内容及步骤(1) 安装Matlab7.5(2) 读取cameraman.tif图像并显示。I=imread('cameraman.tif');imshow(I); (3) 设计运动模糊滤波器、设计高斯模糊噪声滤波器。运动模糊滤波器:I=imread('cameraman.tif'); noise=0.1*randn(size(I); psf=fspecial('motion',21,11); blurred=imfilter(I,psf,'circular'); subplot(1,2,2),imshow(blurred); title(运动模糊)subplot(1,2,1),imshow(I);title(原图)显示运动模糊退化图像:修改运动模糊参数及运动模糊图像显示:I=imread('cameraman.tif'); noise=0.1*randn(size(I); psf=fspecial('motion',50,25); blurred=imfilter(I,psf,'circular'); subplot(1,2,2),imshow(blurred);title(运动模糊) subplot(1,2,1),imshow(I);title(原图)高斯模糊噪声滤波器:I=imread('cameraman.tif'); noise=0.1*randn(size(I); psf=fspecial('gaussian',21,11); blurred=imfilter(I,psf,'circular'); subplot(1,2,2),imshow(blurred); title(高斯模糊)subplot(1,2,1),imshow(I); title(原图)显示高斯模糊退化图像:高斯模糊噪声滤波器修改参数及显示图像:I=imread('cameraman.tif'); noise=0.1*randn(size(I); psf=fspecial('gaussian',12,15); blurred=imfilter(I,psf,'circular'); subplot(1,2,2),imshow(blurred);title(高斯模糊图像)subplot(1,2,1),imshow(I);title(原图) (4) 设计逆滤波器,并对降质图像进行复原,比较复原图像与原始图像。对运动模糊图像进行复原:I=imread('cameraman.tif'); len=10; theta=10; PSF=fspecial('motion',len,theta); Blurredmotion=imfilter(I,PSF,'circular','conv');subplot(2,2,1),imshow(I);title(原图)subplot(2,2,2),imshow(Blurredmotion);title(运动模糊图像) wnr1=deconvwnr(Blurredmotion,PSF); subplot(2,2,3),imshow(wnr1);title(复原图像)对高斯模糊噪声图像进行复原:I=imread('cameraman.tif'); len=10; theta=10; PSF=fspecial('gaussian',len,theta); Blurredgaussian =imfilter(I,PSF,'circular','conv');subplot(2,2,1),imshow(I);title(原图)subplot(2,2,2),imshow(Blurredgaussian);title(高斯模糊图像) wnr1=deconvwnr(Blurredgaussian,PSF); subplot(2,2,3),imshow(wnr1);title(复原图像)(7) 设计维纳滤波器,并对降质图像进行复原,比较复原图像与原始图像。对运动模糊图像进行复原:I = imread('cameraman.tif');subplot(2,2,1),imshow(I);title(原图)len = 30;theta = 75;PSF = fspecial('motion',len,theta);J = imfilter(I,PSF,'conv','circular');subplot(2,2,2),imshow(J);title(运动模糊图像)wiener_img = deconvwnr(J,PSF);subplot(2,2,3),imshow(wiener_img); title(复原图像)对高斯模糊噪声图像进行复原: I = imread('cameraman.tif'); subplot(2,2,1),imshow(I); title(原图) len = 30; theta = 75; PSF = fspecial('gaussian',len,theta); J = imfilter(I,PSF,'conv','circular'); subplot(2,2,2),imshow(J); title(高斯模糊图像) wiener_img = deconvwnr(J,PSF); subplot(2,2,3),imshow(wiener_img); title(复原图像)(8) 计算退化图像、不同方法复原后图像的信噪比。I=imread('cameraman.tif');subplot(2,3,1);imshow(I);title('原图');h1 = fspecial('motion',50,50);MotionBlur = imfilter(I,h1);subplot(2,3,2);imshow(MotionBlur);title('运动模糊');h2 = fspecial('motion',20,10);MotionBlur2 = imfilter(I,h2);subplot(2,3,3);imshow(MotionBlur2);title('运动模糊二');B = deconvwnr(MotionBlur2,h2);subplot(2,3,4);imshow(B);title('复原二');G=imnoise(I,'gaussian',0,0.02);subplot(2,3,5);imshow(G);title('高斯模糊');h1=fspecial('gaussian');Q=imfilter(G,h1);subplot(2,3,6);imshow(Q);title('高斯还原');M,N=size(I);Yu_I=double(I);Yu_B=double(B);ga=sum(sum(Yu_I.2);gb=sum(sum(Yu_I-Yu_B).2);SNR=10*log(ga/gb);P=sqrt(sum(Yu_I-Yu_B).2);Q=sqrt(sum(Yu_I.2);V=P/Q;Yu_cc=corrcoef(Yu_I,Yu_B);>> SNR;V;Yu_ccSNR = 19.8722V = 0.3556Yu_cc = 1.0000 0.7565 0.7565 1.0000五、实验心得通过本次实验,我掌握了matlab的开发环境和数字图像的存取与显示方法。理解了数字图像运动模糊、高斯模糊以及其他噪声引起模糊(图像降质现象)的物理本质,掌握降质图像的逆滤波复原和维纳滤波复原方法。专心-专注-专业

    注意事项

    本文(数字图像的退化与复原(共13页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开