学生成绩分析数学建模优秀范文(共16页).doc
精选优质文档-倾情为你奉上2012年暑期培训数学建模第二次模拟承 诺 书我们仔细阅读了数学建模联赛的竞赛规则。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。我们的参赛报名号为: 参赛队员 (签名) :队员1:队员2:队员3:2012年暑期培训数学建模第二次模拟编 号 专 用 页参赛队伍的参赛号码:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2012年暑期培训数学建模第二次模拟题 目 学生成绩的分析问题摘要本文针对大学高数和线代,概率论成绩进行建模分析,主要用到统计分析的知识及SPSS软件,建立了方差分析、单因素分析、相关性分析等相关模型,从而分析两个专业、四门课程成绩的显著性,以及课程之间的相关性。最后利用分析结论表明了我们对大学数学学习的看法。问题一:每门课程两个专业的差异性需要进行多个平均数间的差异显著性检验,首先应该对数据进行正态分布检验,结论是各个专业的分数都服从正态分布,之后可以根据Kolmogorov-Smirnov 检验(K-S检验)原理,利用SPSS软件进行单因素方差分析,得出方差分析表,进行显著性检验,最后得出的结论是高数1、高数2、线代和概率这四科成绩在两个专业中没有显著性差异。问题二:对于甲乙两个专业分别分析,应用问题一的模型,以每个专业不同班级的高数一、高数二、线代和概率平均数为自变量,同第一问相同的做法,得到两个专业中不同学科之间没有显著差异。 问题三:我们通过对样本数据进行Spss的“双变量相关检验”得出相关系数值r、影响程度的P值,从而来分析出高数1、高数2与概率论、现代的相关性。 问题四:利用上面数据,得到各专业课程的方差和平均值,再通过对各门课程的分析,利用分析结论表明了我们对大学数学学习的看法。本文针对大学甲、乙两个专业数学成绩分析问题,进行建模分析,主要用到统计分析的知识和excel以及matlab软件,建立了方差分析、相关分析的相关模型,研究了影响学生成绩的相关因素,以及大学生如何进行数学课程的学习。问题一 针对每门课程分析两个专业的数学成绩可以通过excel工具得出各门功课的平均值、方差进行比较分析。 问题二 针对专业分析两个专业的数学成绩的数学水平有无明显差异,可以运用平均数、方差进行比较。并对两专业的数学成绩进行T检验,进一步分析其有无显著性差异。问题三 针对各班高数成绩和线代、概率论成绩进行散点图描述建立一元回归线性模型,然后对模型进行求解,对模型进行改进。包括分析置信区间,残差等。 关键词: 平均值 方差 T检验 一元回归线性模型置信区间 残差 excel matlab关键词:单因素方差分析、 方差分析、 相关分析、 spss软件、专心-专注-专业一、问题重述附件是甲专业和乙专业的高等数学上册、高等数学下册、线性代数、概率论与数理统计等三门数学课程的成绩数据,请根据数据分析并回答以下问题: (1)针对每门课程分析,两个专业的分数是否有明显差异? (2)针对专业分析,两个专业学生的数学水平有无明显差异? (3)高等数学成绩的优劣,是否影响线性代数、概率论与数理统计的得分情况? (4)根据你所作出的以上分析,面向本科生同学阐述你对于大学数学课程学习方面的看法。二、模型假设1、假设两个班学生的整体程度和基础差异不大。2、学生和学生之间的成绩是相互独立的,没有影响的。3、假设样本学生的成绩均来自于实际,由此做出的分析是接近实际,能够反映实际状况的。三、问题分析问题一分析:对于每门课程,两个专业的分数是否有显著性差异。首先,应该利用SPSS证明其服从正态分布,之后可以利用SPSS对数据进行单因素分析和方差分析,采用单因素分析法,以专业为方差分析因素,最后比较显著性(Sig),如果Sig>0.05,即没有显著性差异,若Sig<0.05,即对于该门课程,两专业分数有明显差异。问题二分析:模型同问题一。针对专业分析,两个专业学生的各科数学水平有无明显差异。问题三分析:判断高数I、高数和线代、概率论之间成绩的相关性。首先我们要分别整合出四门学科的一组综合指标作为样本,然后求出相关系数矩阵。问题四分析:总结分析。求出各专业科目的平均值和方差,然后进行比较并和前几问相结合,提出合理的建议。四、模型建立和求解模型一:单因素方差分析模型单因素方差分析是固定其他因素,只考虑某一因素对试验指标的影响。建立单因素方差分析模型,用以解决针对每门课程两个专业成绩是否有明显差异和针对专业各科数学成绩是否有明显差异的问题。问题一求解:我们以专业为方差分析的因子,甲专业和乙专业为因子的不同水平,每个班的成绩是实验的数据样本。首先我们需要对数据进行正态分析检验其服从正态分布。利用SPSS软件可以进行正态性分析检验。输入数据后,运行:分析非参数检验1-样本 K-S;之后运行:分析描述统计QQ图,可以对数据进行正态检验。运行结果如图:对每门课程的数据进行QQ图检验如图:高数1的QQ图检验:上图中,实线是正态分布的标准曲线,散点是实际的数据分布,由图可知,散点分布和实线非常接近,即甲乙两专业的高数1成绩服从正态分布。同样可知,甲乙两专业的高数2和线代、概率论都服从正态分布。之后可以对数据进行单因素分析,利用SPSS进行统计分析:分析比较均值单因素ANOVA,最后得出每门课程的单因素分析如下:1、对高数1进行单因素分析,分析结果如下表:ANOVA高数I平方和df均方F显著性组间6105.14235174.4331.279.189组内9685.84971136.420总数15790.991106由图可知,其显著性Sig=0.189>0.05(显著性水平为0.05),说明两个专业的高数1的成绩无明显差异,出现显著相同的状况。2、对高数2进行单因素分析,分析结果如下表:ANOVA高数2平方和df均方F显著性组间4391.58834129.1641.161.294组内7898.97871111.253总数12290.566105同样由图可知,其显著性水平Sig=0.294>0.05(显著性水平为0.05),说明两个专业的高数2成绩也显著相同。3、 对线代成绩进行单因素分析,分析结果如下表:ANOVA线代平方和df均方F显著性组间4149.75535118.564.952.553组内8841.83371124.533总数12991.589106由图可知,其显著性水平为Sig=0.553>0.05,说明两个专业的线代水平没有明显差别,出现基本相同的状况。4、 对概率成绩进行单因素分析,分析结果如下表:ANOVA概率平方和df均方F显著性组间7055.25135201.5791.244.216组内11507.21771162.073总数18562.467106由图可知,概率成绩的显著性水平为Sig=0.216>0.05,说明两个专业的概率成绩显著相同,没有明显差别。问题二求解:(模型一)求解每个专业的学生各门数学成绩之间是否有明显不同,我们仍然运用单因素方差分析的模型,将科目看做对成绩的影响因素,则有两个条件,分别是高数1,高数2,线代,概率论。四科数学成绩看做随机变量,证明其也服从正态分布(仍然运用spss正态检验)。每个变量的样本值为每个专业各班成绩的平均值。在这里我们先证明:在甲乙两个专业内。高数1,高数2,线代和概率分别成正态分布在甲乙专业中分别定义变量名为高数1,高数2,线代和概率。运行spss软件:分析-> 描述统计 -> 描述,分析-> 非参数检验 -> 1-样本 K-S。运行结果如下:表2.1 甲专业学生各科成绩描述统计量N极小值极大值均值标准差方差高数一153043373.8832.8751080.767高数二153409670.1210.226104.570线代15309870.6814.615213.588概率153229775.0914.044197.228有效的 N (列表状态)153表2.2 甲专业学生各科成绩 Kolmogorov-Smirnov 检验高数一高数二线代概率N153153153153正态参数a,b均值73.8870.1270.6875.09标准差32.87510.22614.61514.044最极端差别绝对值.284.153.187.082正.257.153.067.059负-.284-.128-.187-.082Kolmogorov-Smirnov Z3.5151.8972.3101.020渐近显著性(双侧).000.001.000.249a. 检验分布为正态分布。b. 根据数据计算得到。表2.3 乙专业学生各科成绩描述统计量N极小值极大值均值标准差方差高数一108010069.3413.890192.938高数二10809765.4314.333205.424线代108010070.1913.159173.167概论10809774.4514.109199.054有效的 N (列表状态)108表2.4 乙专业学生各科成绩 Kolmogorov-Smirnov 检验高数一高数二线代概论N108108108108正态参数a,b均值69.3465.4370.1974.45标准差13.89014.33313.15914.109最极端差别绝对值.204.251.173.116正.123.123.092.059负-.204-.251-.173-.116Kolmogorov-Smirnov Z2.1232.6051.7971.203渐近显著性(双侧).000.000.003.111a. 检验分布为正态分布。b. 根据数据计算得到。甲专业ANOVA表2.5 甲专业学生各科成绩平方和df均方F显著性组间68.560322.8531.497.265组内183.2491215.271总数251.80915得, F值落在接受域,所以接受。显著性为0.265,即由方差分析得到甲专业四门数学成绩无明显差异。乙专业ANOVA表2.6 甲专业学生各科成绩平方和df均方F显著性组间121.301340.4341.872.213组内172.758821.595总数294.05911得, F值落在接受域,所以接受。显著性为0.213,即由方差分析得到乙专业四门数学成绩无明显差异。问题三求解:(模型二)需要解决学生高等数学成绩的优劣,对线性代数、概率论与数理统计课程的成绩是否显著性相关。将高数,高数,线代,概率论学科成绩看做四个总体,分别把甲乙专业同学的成绩作为样本。然后分别对高数,高数进行相关性分析。相关性分析有很多方法,为简便运算,本文主要应用SPSS软件的相关性分析求解:表17 甲专业相关性高数高数线代概率高数Pearson 相关性1.081.092.081显著性(双侧).318.258.318N153153153153高数Pearson 相关性.0811.446*.308*显著性(双侧).318.000.000N153153153153线代Pearson 相关性.092.446*1.441*显著性(双侧).258.000.000N153153153153概率论Pearson 相关性.081.308*.441*1显著性(双侧).318.000.000N153153153153*. 在 .01 水平(双侧)上显著相关。表18 乙专业相关性高数高数线代概率高数Pearson 相关性1.541*.619*.543*显著性(双侧).000.000.000N108108108108高数Pearson 相关性.541*1.680*.556*显著性(双侧).000.000.000N108108108108线代Pearson 相关性.619*.680*1.697*显著性(双侧).000.000.000N108108108108概率论Pearson 相关性.543*.556*.697*1显著性(双侧).000.000.000N108108108108*. 在 .01 水平(双侧)上显著相关。上表是相关系数大小及其显著性检验结果表,从表中可看出:甲专业:高数和线代的相关系数r=0.446,且显著性水平为p=0.0000.01,因此相关性非常显著,高数和概率论的相关系数r=0.308,且显著性水平为p=0.0000.01,因此相关性非常显著。乙专业:高数和线代的相关系数r=0.619,且显著性水平为p=0.0000.01,因此相关性非常显著;同理高数和概率论的相关系数r=0.543,且显著性水平为p=0.0000.01,相关性非常显著;高数和线代的相关系数r=0.680,且显著性水平为p=0.0000.01,因此相关性非常显著,高数和概率论的相关系数r=0.556,且显著性水平为p=0.0000.01,因此相关性非常显著。问题四求解:(模型三)求出各专业各课程的方差以及各课程的平均值:方差甲乙高数I232.01192.94高数104.57169.09线代213.58173.17概率论197.23199.05各专业各课程方差 各课程平均值 科目平均值高数I70.5高数69.34线代71.83概率论74.82 由上图我们可以看出,对于甲专业来说,各门课方差起伏较大,高数方差明显低于其它3门课;对于乙专业来说,各门课方差无太大变化,高数略低。总的来说,高数的平均分最低,概率论最高。可以看出高数课程对同学们来说普遍较难,应该更加用心的学习,才能更好地掌握知识。学好高数是因为它是一门极能锻炼思维能力的学科,更重要的是,它能锻炼一个人能的耐心与定力-在如今社会里,常常能沉下心来对几个数学问题专研几个小时的人,真的不算多了。在现实世界中,一切事物都发生变化并遵循量变到质变的规律。数学对于现代人整体素质的意义,对于社会与人文科学的作用,也是逐渐被人们所认识的。恩格斯说:要辨证而又唯物的了解自然,就必须掌握数学。英国著名哲学家培根说:数学是打开科学大门的钥匙。现在已经没有哪一个领域能够抵得住数学的渗透。随着知识经济时代的到来,社会经济领域中许多研究对象的数量化趋势越发增强,计算机的广泛普及并深入到人们生活工作的各个角落。诸如此类现象,向人们提出一个迫切问题:每个要想成为有较高文明素养的现代人应当具备一定的数学素质。因此对本科大学生来说,高等数学教育应该是必不可少的。数学教育要培养学生运用数学去分析、解决问题的能力,这种能力不仅表现在对数学知识的记忆,更主要的是掌握数学的思维推理方法。某些定理或公式可以记忆一时,而数学独有的思维与推理方法却能长期发挥作用,甚至受益终生。因为他们是创造的源泉,是发展的基础。对人文类学习者而言更培养了我们的理性思维能力,使得思考诸多问题时更加严谨全面。数学是观察世界的一种方式,这种方式有助于精确理解世界的每个方面。所有的地方都用到数学,数学无处不在。没有数学支撑的学科是无法想象的。举一些常见的例子吧,大学物理的公式很多是用积分形式表达的,一种无穷思想。包括牛顿定理。大学里三大力学的课程都要运用到高等数学的内容。最关键是学数学可以锻炼人的逻辑思维。高等数学里一直贯穿2册书的思想是极限思想,无穷思想。导数、微分是无穷细分的运用。积分是极限求和。无穷中存在极限,极限中尽显无穷。那是你高中的知识所无法理解和具备的思想。只有学过高数的人才懂得。综上,高数和线代、概率论学科密切相关,可以说高数是一切理工学科的基础,但同时它的难度也比较大,同学们一定要在高数上多下工夫,为将来其他课程的学习打下坚实的基础。五、模型评价:优点:1.本文建立了单因素方差分析模型,该模型适用范围较广,便于推广。2 .该模型以数理统计作为基础,具有一定的理论依据。其运用显著性验,单因素方分析能有效地对于问题进行合理的求解。3. 由于题中所给数据较多,计算比较困难,运用spss软件进行求解在很大程度上减少了计算的冗余度,方便快捷。缺点: 1根据题意科目的调整只是依据方差大小,可能会与实际不符。 2. 用题目给的数据进行分析,数据不一定准确。 3. 为了简化模型,我们没有考虑各科之间的差异,并且由于我们的样本容量相对较小,无法得到更一般意义上的结论,而且学生的成绩有时也不是相互独立的,因此在现实使用中有很大的局限性。六、模型的改进与应用对于此次模型,我们可以在查取充分的实际数据之后,将不同类别科目进行权重划分,并将学生成绩及科目对于学生的实用度加以考虑入第四题的解题中,从而可以合理地做到一方面减轻学生的学习负担,另一方面为学生择取更宜于实际运用的学科,从而将模型更好地运用到实际生活中。七、参考文献参考文献:1统计分析与是spss的应用 中国人民大学出版社 薛微编著2数学模型(第三版) 高等教育出版社 姜启源 谢金星编著