欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    仿真高斯白噪声信道下QPSK的EbN0与误比特率之间的关系(共11页).doc

    • 资源ID:14347828       资源大小:68.50KB        全文页数:11页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    仿真高斯白噪声信道下QPSK的EbN0与误比特率之间的关系(共11页).doc

    精选优质文档-倾情为你奉上QPSK调制与解调在MATLAB平台上的实现QPSK即四进制移向键控(Quaternary Phase Shift Keying),它利用载波的四种不同相位来表示数字信息,由于每一种载波相位代表两个比特信息,因此每个四进制码元可以用两个二进制码元的组合来表示。两个二进制码元中的前一个码元用a表示,后一个码元用b表示。 QPSK信号可以看作两个载波正交2PSK信号的合成,下图表示QPSK正交调制器。由QPSK信号的调制可知,对它的解调可以采用与2PSK信号类似的解调方法进行解调。解调原理图如下所示,同相支路和正交支路分别采用相干解调方式解调,得到和,经过抽样判决和并/串交换器,将上下支路得到的并行数据恢复成串行数据。% 调相法clear allclose allt=-1:0.01:7-0.01;tt=length(t);x1=ones(1,800);for i=1:tt if (t(i)>=-1 & t(i)<=1) | (t(i)>=5& t(i)<=7); x1(i)=1; else x1(i)=-1; endendt1=0:0.01:8-0.01;t2=0:0.01:7-0.01;t3=-1:0.01:7.1-0.01;t4=0:0.01:8.1-0.01;tt1=length(t1);x2=ones(1,800);for i=1:tt1 if (t1(i)>=0 & t1(i)<=2) | (t1(i)>=4& t1(i)<=8); x2(i)=1; else x2(i)=-1; endendf=0:0.1:1;xrc=0.5+0.5*cos(pi*f);y1=conv(x1,xrc)/5.5;y2=conv(x2,xrc)/5.5;n0=randn(size(t2);f1=1;i=x1.*cos(2*pi*f1*t);q=x2.*sin(2*pi*f1*t1);I=i(101:800);Q=q(1:700);QPSK=sqrt(1/2).*I+sqrt(1/2).*Q;QPSK_n=(sqrt(1/2).*I+sqrt(1/2).*Q)+n0;n1=randn(size(t2);i_rc=y1.*cos(2*pi*f1*t3);q_rc=y2.*sin(2*pi*f1*t4);I_rc=i_rc(101:800);Q_rc=q_rc(1:700);QPSK_rc=(sqrt(1/2).*I_rc+sqrt(1/2).*Q_rc);QPSK_rc_n1=QPSK_rc+n1;figure(1)subplot(4,1,1);plot(t3,i_rc);axis(-1 8 -1 1);ylabel('a序列');subplot(4,1,2);plot(t4,q_rc);axis(-1 8 -1 1);ylabel('b序列');subplot(4,1,3);plot(t2,QPSK_rc);axis(-1 8 -1 1);ylabel('合成序列');subplot(4,1,4);plot(t2,QPSK_rc_n1);axis(-1 8 -1 1);ylabel('加入噪声');效果图:% 设定 T=1,加入高斯噪声clear allclose all% 调制bit_in = randint(1e3, 1, 0 1);bit_I = bit_in(1:2:1e3);bit_Q = bit_in(2:2:1e3);data_I = -2*bit_I+1;data_Q = -2*bit_Q+1;data_I1=repmat(data_I',20,1);data_Q1=repmat(data_Q',20,1);for i=1:1e4 data_I2(i)=data_I1(i); data_Q2(i)=data_Q1(i);end;f=0:0.1:1;xrc=0.5+0.5*cos(pi*f);data_I2_rc=conv(data_I2,xrc)/5.5;data_Q2_rc=conv(data_Q2,xrc)/5.5;f1=1;t1=0:0.1:1e3+0.9;n0=rand(size(t1);I_rc=data_I2_rc.*cos(2*pi*f1*t1);Q_rc=data_Q2_rc.*sin(2*pi*f1*t1);QPSK_rc=(sqrt(1/2).*I_rc+sqrt(1/2).*Q_rc);QPSK_rc_n0=QPSK_rc+n0;% 解调I_demo=QPSK_rc_n0.*cos(2*pi*f1*t1);Q_demo=QPSK_rc_n0.*sin(2*pi*f1*t1);% 低通滤波I_recover=conv(I_demo,xrc); Q_recover=conv(Q_demo,xrc);I=I_recover(11:10010);Q=Q_recover(11:10010);t2=0:0.05:1e3-0.05;t3=0:0.1:1e3-0.1;% 抽样判决data_recover=;for i=1:20:10000 data_recover=data_recover I(i:1:i+19) Q(i:1:i+19);end;bit_recover=;for i=1:20:20000 if sum(data_recover(i:i+19)>0 data_recover_a(i:i+19)=1; bit_recover=bit_recover 1; else data_recover_a(i:i+19)=-1; bit_recover=bit_recover -1; endenderror=0;dd = -2*bit_in+1;ddd=dd'ddd1=repmat(ddd,20,1);for i=1:2e4 ddd2(i)=ddd1(i);endfor i=1:1e3 if bit_recover(i)=ddd(i) error=error+1; endendp=error/1000;figure(1)subplot(2,1,1);plot(t2,ddd2);axis(0 100 -2 2);title('原序列');subplot(2,1,2);plot(t2,data_recover_a);axis(0 100 -2 2);title('解调后序列');效果图:% 设定 T=1, 不加噪声clear allclose all% 调制bit_in = randint(1e3, 1, 0 1);bit_I = bit_in(1:2:1e3);bit_Q = bit_in(2:2:1e3);data_I = -2*bit_I+1;data_Q = -2*bit_Q+1;data_I1=repmat(data_I',20,1);data_Q1=repmat(data_Q',20,1);for i=1:1e4 data_I2(i)=data_I1(i); data_Q2(i)=data_Q1(i);end;t=0:0.1:1e3-0.1;f=0:0.1:1;xrc=0.5+0.5*cos(pi*f);data_I2_rc=conv(data_I2,xrc)/5.5;data_Q2_rc=conv(data_Q2,xrc)/5.5;f1=1;t1=0:0.1:1e3+0.9;I_rc=data_I2_rc.*cos(2*pi*f1*t1);Q_rc=data_Q2_rc.*sin(2*pi*f1*t1);QPSK_rc=(sqrt(1/2).*I_rc+sqrt(1/2).*Q_rc);% 解调I_demo=QPSK_rc.*cos(2*pi*f1*t1);Q_demo=QPSK_rc.*sin(2*pi*f1*t1);I_recover=conv(I_demo,xrc);Q_recover=conv(Q_demo,xrc);I=I_recover(11:10010);Q=Q_recover(11:10010);t2=0:0.05:1e3-0.05;t3=0:0.1:1e3-0.1;data_recover=;for i=1:20:10000 data_recover=data_recover I(i:1:i+19) Q(i:1:i+19);end;ddd = -2*bit_in+1;ddd1=repmat(ddd',10,1);for i=1:1e4 ddd2(i)=ddd1(i);endfigure(1)subplot(4,1,1);plot(t3,I);axis(0 20 -6 6);subplot(4,1,2);plot(t3,Q);axis(0 20 -6 6);subplot(4,1,3);plot(t2,data_recover);axis(0 20 -6 6);subplot(4,1,4);plot(t,ddd2);axis(0 20 -6 6);效果图:% QPSK误码率分析SNRindB1=0:2:10;SNRindB2=0:0.1:10;for i=1:length(SNRindB1) pb,ps=cm_sm32(SNRindB1(i); smld_bit_err_prb(i)=pb; smld_symbol_err_prb(i)=ps;end;for i=1:length(SNRindB2) SNR=exp(SNRindB2(i)*log(10)/10); theo_err_prb(i)=Qfunct(sqrt(2*SNR);end;title('QPSK误码率分析');semilogy(SNRindB1,smld_bit_err_prb,'*');axis(0 10 10e-8 1);hold on;% semilogy(SNRindB1,smld_symbol_err_prb,'o');semilogy(SNRindB2,theo_err_prb);legend('仿真比特误码率','理论比特误码率');hold off;functiony=Qfunct(x)y=(1/2)*erfc(x/sqrt(2);functionpb,ps=cm_sm32(SNRindB)N=10000;E=1;SNR=10(SNRindB/10);sgma=sqrt(E/SNR)/2;s00=1 0;s01=0 1;s11=-1 0;s10=0 -1;for i=1:N temp=rand; if (temp<0.25) dsource1(i)=0; dsource2(i)=0; elseif (temp<0.5) dsource1(i)=0; dsource2(i)=1; elseif (temp<0.75) dsource1(i)=1; dsource2(i)=0; else dsource1(i)=1; dsource2(i)=1; end;end;numofsymbolerror=0;numofbiterror=0;for i=1:N n=sgma*randn(size(s00); if(dsource1(i)=0)&(dsource2(i)=0) r=s00+n; elseif(dsource1(i)=0)&(dsource2(i)=1) r=s01+n; elseif(dsource1(i)=1)&(dsource2(i)=0) r=s10+n; else r=s11+n; end; c00=dot(r,s00); c01=dot(r,s01); c10=dot(r,s10); c11=dot(r,s11); c_max=max(c00 c01 c10 c11); if (c00=c_max) decis1=0;decis2=0; elseif(c01=c_max) decis1=0;decis2=1; elseif(c10=c_max) decis1=1;decis2=0; else decis1=1;decis2=1; end; symbolerror=0; if(decis1=dsource1(i) numofbiterror=numofbiterror+1; symbolerror=1; end; if(decis2=dsource2(i) numofbiterror=numofbiterror+1; symbolerror=1; end; if(symbolerror=1) numofsymbolerror=numofsymbolerror+1; end;end;ps=numofsymbolerror/N;pb=numofbiterror/(2*N);效果图:专心-专注-专业

    注意事项

    本文(仿真高斯白噪声信道下QPSK的EbN0与误比特率之间的关系(共11页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开