欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    机器学习算法(共13页).docx

    • 资源ID:14369345       资源大小:4.58MB        全文页数:13页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    机器学习算法(共13页).docx

    精选优质文档-倾情为你奉上通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。以后有时间再对单个算法做深入地解析。今天的算法如下:1. 决策树2. 随机森林算法3. 逻辑回归4. SVM5. 朴素贝叶斯6. K最近邻算法7. K均值算法8. Adaboost 算法9. 神经网络10. 马尔可夫1. 决策树根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。2. 随机森林在源数据中随机选取数据,组成几个子集S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别由 S 随机生成 M 个子矩阵这 M 个子集得到 M 个决策树将新数据投入到这 M 个树中,得到 M 个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果3. 逻辑回归当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。所以此时需要这样的形状的模型会比较好那么怎么得到这样的模型呢?这个模型需要满足两个条件 大于等于0,小于等于1大于等于0 的模型可以选择 绝对值,平方值,这里用 指数函数,一定大于0小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了再做一下变形,就得到了 logistic regression 模型通过源数据计算可以得到相应的系数了最后得到 logistic 的图形4. SVMsupport vector machine要将两类分开,想要得到一个超平面,最优的超平面是到两类的 margin 达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于1点到面的距离根据图中的公式计算所以得到 total margin 的表达式如下,目标是最大化这个 margin,就需要最小化分母,于是变成了一个优化问题举个栗子,三个点,找到最优的超平面,定义了 weight vector(2,3)(1,1)得到 weight vector 为(a,2a),将两个点代入方程,代入(2,3)另其值1,代入(1,1)另其值-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。a 求出来后,代入(a,2a)得到的就是 support vectora 和 w0 代入超平面的方程就是 support vector machine5. 朴素贝叶斯举个在 NLP 的应用给一段文字,返回情感分类,这段文字的态度是positive,还是negative为了解决这个问题,可以只看其中的一些单词这段文字,将仅由一些单词和它们的计数代表原始问题是:给你一句话,它属于哪一类通过 bayes rules 变成一个比较简单容易求得的问题问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率栗子:单词 love 在 positive 的情况下出现的概率是 0.1,在 negative 的情况下出现的概率是 0.0016. K最近邻k nearest neighbours给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类栗子:要区分 猫 和 狗,通过 claws 和 sound 两个feature来判断的话,圆形和三角形是已知分类的了,那么这个 star 代表的是哪一类呢 k3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫7. K均值想要将一组数据,分为三类,粉色数值大,黄色数值小最开心先初始化,这里面选了最简单的 3,2,1 作为各类的初始值剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别分好类后,计算每一类的平均值,作为新一轮的中心点几轮之后,分组不再变化了,就可以停止了8. Adaboostadaboost 是 bosting 的方法之一bosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度adaboost 的栗子,手写识别中,在画板上可以抓取到很多 features,例如 始点的方向,始点和终点的距离等等training 的时候,会得到每个 feature 的 weight,例如 2 和 3 的开头部分很像,这个 feature 对分类起到的作用很小,它的权重也就会较小 而这个 alpha 角 就具有很强的识别性,这个 feature 的权重就会较大,最后的预测结果是综合考虑这些 feature 的结果9. 神经网络Neural Networks 适合一个input可能落入至少两个类别里NN 由若干层神经元,和它们之间的联系组成第一层是 input 层,最后一层是 output 层在 hidden 层 和 output 层都有自己的 classifierinput 输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output 层的节点上的分数代表属于各类的分数,下图例子得到分类结果为 class 1同样的 input 被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights 和 bias这也就是 forward propagation10. 马尔可夫Markov Chains 由 state 和 transitions 组成栗子,根据这一句话 the quick brown fox jumps over the lazy dog,要得到 markov chain步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如 the 后面可以连接的单词,及相应的概率生活中,键盘输入法的备选结果也是一样的原理,模型会更高级专心-专注-专业

    注意事项

    本文(机器学习算法(共13页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开