完整毕业设计-110KV降压变电站电气一次部分设计(共61页).doc
-
资源ID:14373983
资源大小:1.03MB
全文页数:61页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
完整毕业设计-110KV降压变电站电气一次部分设计(共61页).doc
精选优质文档-倾情为你奉上 110KV降压变电站电气一次部分设计第一部分 设计说明书第1章 设计说明1.1 环境条件(1)变电站所在高度70M(2)最高年平均气温19摄氏度,月平均气温27摄氏度1.2 电力系统情况(1)110KV变电站,向该地区用35KV和10KV两个电压等级供电。110KV以双回路与 35km外的系统相连。系统最大方式的容量为2900 MVA,相应的系统电抗为0.518;系统最小的方式为2100 MVA,相应的系统电抗为0.584,(一系统容量及电压为基准的标么值)。系统最大负荷利用小时数为TM=5660h。(2) 35KV电压级,架空线6回,3回输送功率12MVA;3回输送功率8MVA。(3) 10KV电压级,电缆出线3回,每回输送功率3MW;架空输电线4回,每回输送功率4MW。1.3 设计任务(1)变电站电气主接线的设计(2)主变压器的选择(3)短路电流计算(4)主要电气设备选择(5)变电站继电保护第2章 电气主接线的设计2.1 电气主接线概述发电厂和变电所中的一次设备、按一定要求和顺序连接成的电路,称为电气主接线,也成主电路。它把各电源送来的电能汇集起来,并分给各用户。它表明各种一次设备的数量和作用,设备间的连接方式,以及与电力系统的连接情况。所以电气主接线是发电厂和变电所电气部分的主体,对发电厂和变电所以及电力系统的安全、可靠、经济运行起着重要作用,并对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大影响。2.1.1 在选择电气主接线时的设计依据(1)发电厂、变电所所在电力系统中的地位和作用(2)发电厂、变电所的分期和最终建设规模(3)负荷大小和重要性(4)系统备用容量大小(5)系统专业对电气主接线提供的具体资料2.1.2 主接线设计的基本要求(1)可靠性(2)灵活性(3)经济性2.1.3 6-220KV高压配电装置的基本接线有汇流母线的连线:单母线、单母线分段、双母线、双母分段、增设旁母线或旁路隔离开关等。无汇流母线的接线:变压器-线路单元接线、桥形接线、角形接线等。6-220KV高压配电装置的接线方式,决定于电压等级及出线回路数。2.2 110KV侧主接线的设计110KV侧是以双回路与系统相连。由电力工程电气一次设计手册第二章第二节中的规定可知:35110KV线路为两回以下时,宜采用桥形,线路变压器组线路分支接线。故110KV侧采用桥形的连接方式。2.3 35KV侧主接线的设计35KV侧出线回路数为6回。由电力工程电气一次设计手册第二章第二节中的规定可知:当3563KV配电装置出线回路数为48回,采用单母分段连接,当连接的电源较多,负荷较大时也可采用双母线接线。故35KV可采用单母分段连接也可采用双母线连接。2.4 10KV侧主接线的设计10KV侧出线回路数为7回。由电力工程电气设计手册第二章第二节中的规定可知:当610KV配电装置出线回路数为6回及以上时采用单母分段连接。故10KV采用单母分段连接。2.5 主接线方案的比较选择由以上可知,此变电站的主接线有两种方案方案一:110KV侧采用外桥形的连接方式,35KV侧采用单母分段连接,10KV侧采用单母分段连接,如图2-1所示。 图2-1 110KV电气主接线方案一方案二:110KV侧采用外桥形的连接方式,35KV侧采用双母线连接,10KV侧采用单母分段连接,如图2-2所示。此两种方案的比较方案一 110KV侧采用外桥形的连接方式,便于变压器的正常投切和故障切除,35KV、10KV采用单母分段连线,对重要用户可从不同段引出两个回路,当一段母线发生故障,分段断路器自动将故障切除,保证正常母线供电不间断,所以此方案同时兼顾了可靠性,灵活性,经济性的要求。方案二虽供电更可靠,调度更灵活,但与方案一相比较,设备增多,配电装置布置复杂,投资和占地面增大,而且,当母线故障或检修时,隔离开关作为操作电器使用,容易误操作。由以上可知,在本设计中采用第一种接线,即110KV侧采用外桥形的连接方式,35KV侧采用单母分段连线,10KV侧采用单母分段连接。图2-2 110KV电气主接线方案二2.6 主接线中的设备配置2.6.1 隔离开关的配置(1) 中小型发电机出口一般应装设隔离开关:容量为220MW及以上大机组与双绕组变压器为单元连接时,其出口不装设隔离开关,但应有可拆连接点。(2) 在出线上装设电抗器的610KV配电装置中,当向不同用户供电的两回线共用一台断路器和一组电抗器时,每回线上应各装设一组出线隔离开关。(3) 接在发电机、变压器因出线或中性点上的避雷器不可装设隔离开关。(4) 中性点直接接地的普通型变压器均应通过隔离开关接地;自耦变压器的中性点则不必装设隔离开关。2.6.2 接地刀闸或接地器的配置(1) 为保证电器和母线的检修安全,35KV及以上每段母线根据长度宜装设12组接地刀闸或接地器,每两接地刀闸间的距离应尽量保持适中。母线的接地刀闸宜装设在母线电压互感器的隔离开关和母联隔离开关上,也可装于其他回路母线隔离开关的基座上。必要时可设置独立式母线接地器。(2) 63KV及以上配电装置的断路器两侧隔离开关和线路隔离开关的线路宜配置接地刀闸。2.6.3 电压互感器的配置(1) 电压互感器的数量和配置与主接线方式有关,并应满足测量、保护、同期和自动装置的要求。电压互感器的配置应能保证在运行方式改变时,保护 装置不得失压,同期点的两侧都能提取到电压。(2) 旁路母线上是否需要装设电压互感器,应视各回出线外侧装设电压互感器的情况和需要确定。(3) 当需要监视和检测线路侧有无电压时,出线侧的一相上应装设电压互感器。(4) 当需要在330KV及以下主变压器回路中提取电压时,可尽量利用变压器电容式套管上的电压抽取装置。(5) 发电机出口一般装设两组电压互感器,供测量、保护和自动电压调整装置需要。当发电机配有双套自动电压调整装置,且采用零序电压式匝间保护时,可再增设一组电压互感器。2.6.4 电流互感器的配置(1) 凡装有断路器的回路均应装设电流互感器其数量应满足测量仪表、保护和自动装置要求。(2) 在未设断路器的下列地点也应装设电流互感器:发电机和变压器的中性点、发电机和变压器的出口、桥形接线的跨条上等。(3) 对直接接地系统,一般按三相配置。对非直接接地系统,依具体要求按两相或三相配置。(4) 一台半断路器接线中,线路线路串可装设四组电流互感器,在能满足保护和测量要求的条件下也可装设三组电流互感器。线路变压器串,当变压器的套管电流互感器可以利用时,可装设三组电流互感器。2.6.5 避雷器的装置(1) 配电装置的每组母线上,应装设避雷器,但进出线装设避雷器时除外。(2) 旁路母线上是否需要装设避雷器,应视在旁路母线投入运行时,避雷器到被保护设备的电气距离是否满足要求而定。(3) 220KV及以下变压器到避雷器的电气距离超过允许值时,应在变压器附近增设一组避雷器。(4) 三绕组变压器低压侧的一相上宜设置一台避雷器。(5) 下列情况的变压器中性点应装设避雷器 直接接地系统中,变压器中性点为分级绝缘且装有隔离开关时。 直接接地系统中,变压器中性点为全绝缘,但变电所为单进线且为单台变压器运行时。 接地和经消弧线圈接地系统中,多雷区的单进线变压器中性点上。 发电厂变电所35KV及以上电缆进线段,在电缆与架空线的连接处应装设避雷器。 SF6全封闭电器的架空线路侧必须装设避雷器。 110220KV线路侧一般不装设避雷器。第3章 主变压器的选择3.1 负荷分析3.1.1 负荷分类及定义(1) 一级负荷:中断供电将造成人身伤亡或重大设计损坏,且难以挽回,带来极大的政治、经济损失者属于一级负荷。一级负荷要求有两个独立电源供电。(2) 二级负荷:中断供电将造成设计局部破坏或生产流程紊乱,且较长时间才能修复或大量产品报废,重要产品大量减产,属于二级负荷。二级负荷应由两回线供电。但当两回线路有困难时(如边远地区),允许有一回专用架空线路供电。(3) 三级负荷:不属于一级和二级的一般电力负荷。三级负荷对供电无特殊要求,允许较长时间停电,可用单回线路供电。3.1.2 负荷计算最大综合计算负荷的计算可按照公式: (3-1)求得。式中 同时系数,出线回数较少时,可取0.90.95,出线回数较多时,取0.850.9; 线损,取5% 3.2 主变压器台数的确定对大城市郊区的一次变电所,在中低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。此设计中的变电站符合此情况,因此选择两台变压器即可满足负荷的要求。3.3 主变压器相数的确定(1) 主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因素。(2) 当不受运输条件限制时,在330KV及以下的发电厂和变电所,均应采用三相变压器。社会日新月异,在今天科技已十分进步,变压器的制造、运输等等已不成问题,故有以上规程可知,此变电所的主变应采用三相变压器。3.4 主变压器容量的确定装有两台及以上主变压器的变电所中,当其中一台主变压器停运时,其余主变压器的容量一般应满足60%的全部最大综合计算负荷。即(n-1) (3-2)由上可知,此变电站单台主变压器的容量为:×60%=79.8×60%=47.88 MVA所以应选容量为50 MVA的主变压器综合以上分析计算,选择变压器型号为SFSZ750000/110型,其参数如表3-1所示。表3-1 SFSZ750000/110变压器参数变压器型号额定容量(KVA)电压(KV)阻抗电压(%)SFSZ750000/11050000高压侧中压侧低压侧高中高低中低110±8×1.25%38.5±5%10.51710.56.5第4章 短路电流的计算4.1 短路电流计算的目的及规定4.1.1 短路电流计算的目的在变电所的电气设计中,短路电流计算是其中的一个重要环节。在选择电气设备时,为保证在正常运行和故障情况下都能安全、可靠地工作,需要进行全面的短路电流计算。例如:计算某一时刻的短路电流有效值,用以校验开关设备的开断能力和确定电抗器的电抗值;计算短路后较长时间短路电流有效值,用以校验设备的热稳定值;计算短路电流冲击值,用以校验设备动稳定。4.1.2 短路电流计算的一般规定 (1) 电力系统中所有电源均在额定负荷下运行;(2) 短路种类:一般以三相短路计算;(3) 接线方式应是可能发生最大短路电流的正常方式(即最大运行方式),而不能用仅在切换过程中可能并列运行的接线方式;(4) 短路电流计算点:在正常接线方式时,通过电气设备的短路电流为最大的地点。4.2 短路电流的计算结果在本设计中,选取5个短路点,分别为35KV、10KV的母线,各个电压等级的主变压侧。将所计算最大方式下短路电流值列成表4-1所示。表4-1 最大方式下各个短路点的短路电流值 名 称短路点 基准电压(KV)(KA)三相(KA)两相(KA)(KA)S(MVA)371.761.524.492.66112.7910.56.715.8117.1110.13122.031150.640.553.980.97127.48371.641.424.182.48105.110.56.325.4716.129.54114.94第5章 主要电气设备的选择5.1 电气设备选择概述5.1.1 选择的原则(1) 应满足正常运行、检修、短路、和过电压情况下的要求,并考虑远景发展。(2) 应按当地环境条件校核。(3) 应力求技术先进和经济合理(4) 与整个工程的建设标准应协调一致。(5) 同类设备应尽量减少种类。(6) 选用的新产品均应具有可靠的实验数据。(7) 设备的选择和校验。5.1.2 电气设备和载流导体选择的一般条件(1) 按正常工作条件选择 额定电压:所选电气设备和电缆的最高允许工作电压,不得低于装设回路的最高运行电压UNUNs 额定电流:所选电气设备的额定电流IN,或载流导体的长期允许电流Iy,不得低于装设回路的最大持续工作电流I max 。计算回路的最大持续工作电流I max 时,应考虑回路在各种运行方式下的持续工作电流,选用最大者。(2) 按短路状态校验 。 热稳定效验:当短路电流通过被选择的电气设备和载流导体时,其热效应不应超过允许值,It2t> Qk,tk=tin+ta,校验电气设备及电缆(36KV厂用馈线电缆除外)热稳定时,短路持续时间一般采用后备保护动作时间加断路器全分闸时间。 动稳定校验:iesish,用熔断器保护的电气设备和载流导体,可不校验热稳定;电缆不校验动稳定;(3) 短路校验时短路电流的计算条件:所用短路电流其容量应按具体工程的设计规划容量计算,并应考虑电力系统的远景发展规划;计算电路应按可能发生最大短路电流的正常接线方式,而不应按仅在切换过程中可能并列的接线方式;短路的种类一般按三相短路校验;对于发电机出口的两相短路或中性点直接接地系统、自耦变压器等回路中的单相、两相接地短路较三相短路更严重时,应按严重情况校验。5.2 高压断路器及隔离开关的选择5.2.1 断路器及隔离开关的选择方法(1) 选择形式电压等级在35kV及以下的可选用户内式少油断路器、真空断路器或 SF 断路器 ;35kV的也可选用户外式多油断路器、真空断路器或SF断路器 ;电压等级在110330kV范围,可选用户外式少油断路器或SF断路器。(2) 选择电压所选断路器的额定电压应大于或等于安装处电网的额定电压。(3) 选择额定电流按选择断路器的额定电流。(4) 校验额定开断能力为使断路器安全可靠地切断短路电流,应满足下列条件: (5-1)式中 断路器的额定开端电流,kA;刚分电流,kA。(5) 校验动稳定按进行校验。(6) 校验热稳定按进行校验。隔离开关的选择与断路器选择相比,不用进行额定开断能力校验。其他与断路器均相同,且与其成为配套装置。5.2.2 断路器和隔离开关的选择结果依据上述原则,断路器选择结果如下表5-1所示:表5-1 断路器选择的结果安装地点型号额定电压(KV)额定电流(A)额定开断电流(KA)极限通过电流(KA)热稳定电流(KA)固有分闸时间(S)110KV主变压器侧110315031.512550(3S)0.0335KV出线侧3520006.6176.6(4S)0.0635KV主变压器侧3520006.6176.6(4S)0.0610KV出线侧101250028.97143.2(1S)0.0610KV主变压器侧101250028.97143.2(1S)0.06隔离开关的选择结果如下表5-2所示:表5-2 隔离开关的选择结果安装地点型号额定电压(KV)额定电流(A)极限通过电流(KA)热稳定电流(KA)110KV主变压器侧1106308031.5(4S)35KV出线侧DW35200010031.5(4S)35KV主变压器侧DW35200010031.5(4S)10KV出线侧106000200105(5S)10KV主变压器侧106000200105(5S)5.3 母线的选择5.3.1 导体选择的一般要求裸导体应根据具体情况,按下列技术条件分别进行选择和校验;工作电流;电晕(对110KV级以上电压的母线);动稳定性和机械强度;热稳定性;同时也应注意环境条件,如温度、日照、海拔等。导体截面可以按长期发热允许电流或经济密度选择,除配电装置的汇流母线外,对于年负荷利用小时数大,传输容量大,长度在20M以上的导体,其截面一般按经济电流密度选择。一般来说,母线系统包括截面导体和支撑绝缘两部分,载流导体构成硬母线和软母线,软母线是钢芯铝绞线,有单根,双分和组合导体等形式,因其机械强度决定支撑悬挂的绝缘子,所以不必效验其机械强度。5.3.2 母线选择的方法(1) 选择母线的材料、截面形状:载流导体一般采用铝质材料,对于持续工作电流在4000A及以下时,一般采用矩形导体;在110KV及以上高压配电装置,一般采用软导体。软母线(钢芯铝绞线)适用于各个电压等级。(2) 选择母线的截面积:对于汇流母线须按照其最大长期工作电流选择截面积。(3) 校验母线的动稳定和热稳定:如果选用软母线,则此项校验可以省略。 6.1.2 (4) 电晕校验:对于110kV及以上的母线,还应校验能否发生电晕。但是如果截面积大于最小电晕校验截面积,则不需电晕校验。5.3.3 母线选择结果按照上述过程,母线选择结果如下:35KV:选用63×10(mm×mm)双条矩形铝导体,平放,长期允许载流量,集肤效应系数。10KV:选用槽形铝导体,其中h=225mm,b=105mm,e=12.5mm,r=16mm,双槽导体截面S=9760,集肤效应系数,双槽导体长期允许载流量,平放,截面系数,惯性矩,惯性半径。5.4 绝缘子和穿墙套管的选择5.4.1 绝缘子的选择方法在发电厂变电站的各级电压配电装置中,高压电器的连接、固定和绝缘,是由导电体、绝缘子和金具来实现的。所以,绝缘子必须有足够的绝缘强度和机械强度,耐热、耐潮湿。绝缘子型式的选择:对于软导体,由悬式绝缘子悬挂于构架上,所以要选用悬式绝缘子。对于硬母线,则需要支柱绝缘子支撑,所以采用支柱式绝缘子。如果采用悬式绝缘子,则根据相应规定,选择正确的型号和该型号在不同电压等级时所需要的片数即可。如果采用支柱式绝缘子,则按照下面的步骤选择:(1) 按安装地点选择支柱绝缘子一般用于屋内配电装置的选用户内式的,用于屋外配电装置的选用屋外式的。当户外污秽严重时,应选用防污式的。(2) 按电压条件选择支柱绝缘子应满足下式 : (5-2)式中 所在电网的额定电压,kV ; 支柱绝缘子的额定电压,kV。(3) 按短路条件校验支柱绝缘子由于三相母线是通过支柱绝缘子支持和固定的,因此,短路时作用在母线上的相间电动力也会传到支柱绝缘子上,为保证它们在这种情况下不受损坏,应满足下列条件: (5-3) 式中 支柱绝缘子的抗弯破坏负荷,N,可从设计手册中查得;作用在支柱绝缘子上的相间电动力,N。本设计中35KV、10KV均采用硬母线,故这两个电压等级选用支柱绝缘子。5.4.2 穿墙套管的选择方法(1) 根据装设地点可选择屋内型和屋外型,根据用途可选择带导体的穿墙套管和不带导体的母线型穿墙套管。屋内配电装置一般选用铝导体穿墙套管。(2) 额定电压的选择:按穿墙套管的额定电压不得低于其所在电网额定电压的条件来选择。当有冰雪时,应选用高一级电压的产品。(3) 额定电流的选择:带导体的穿墙套管,其额定电流不得小于所在回路最大持续工作电流。母线型穿墙套管本身不带导体,没有额定电流选择问题,但应校核窗口允许穿过的母线尺寸。(4) 热稳定效验:满足热稳定的条件为 (5-4)式中 短路电流热效应;制造厂家给出的t秒内允许通过的热稳定电流(KA)母线型穿墙套管不需进行热稳定效验。(5) 动稳定效验:当三相导体水平布置时,穿墙套管端部所受电动力(单位为N)为 (5-5)式中套管端部至最近一个支柱绝缘子间的距离(m);套管本身长度(m)。动稳定效验的条件为 (5-6)式中 抗弯破坏负荷(N),0.6为安全系数。5.4.3 绝缘子和穿墙套管选择结果按照以上方法,本设计中绝缘子选择结果如下表5-3所示:表5-3 绝缘子的选择结果安装地点型式型号高度(mm)机械破坏负荷(KN)35KV支柱式ZS-35/8400810KV支柱式ZL-10/81708穿墙套管选择结果如下表5-4所示:表5-4 穿墙套管的选择结果型号额定电压(KV)额定电流(A)套管长度(mm)机械破坏负荷(KN)CWLC2-1010600043512.55.5 电流互感器的选择5.5.1 电流互感器的选择原则电流互感器的选择和配置应按下列条件:型式:电流互感器的型时应根据使用环境条件和产品情况选择。对于620KV屋内配电装置,可采用瓷绝缘结构和树脂浇注绝缘结构的电流互感器。对于35KV及以上配电装置,一般采用油浸式瓷箱式绝缘结构的独立式电流互感器。有条件时,应尽量采用套管式电流互感器。一次回路电压: 一次回路电流: 准确等级:要先知道电流互感器二次回路所接测量仪表的类型及对准确等级的要求,并按准确等级要求高的表计来选择。二次负荷: (5-7) (5-8)动稳定: (5-9)式中, 是电流互感器动稳定倍数。热稳定: (5-10)为电流互感器的1s热稳定倍数。5.5.2电流互感器的选择结果电流互感器的选择结果如下表5-5所示表5-5 电流互感器的选择结果型号额定电压(KV)电流比准确级次组合热稳定电流(KA)动稳定电流(KA)110751353530751040905.6 电压互感器的选择5.6.1 电压互感器的选择原则电压互感器的选择和配置应按下列条件:型式:620KV屋内互感器的型式应根据使用条件可以采用树脂胶主绝缘结构的电压互感器;35KV110KV配电装置一般采用油浸式结构的电压互感器;220KV级以上的配电装置,当容量和准确等级满足要求,一般采用电容式电压互感器。在需要检查和监视一次回路单相接地时,应选用三相五柱式电压互感器或具有第三绕组的单相电压互感器。一次电压、为电压互感器额定一次线电压。二次电压:按表所示选用所需二次额定电压。如表5-6所示。表5-6 电压互感器一二次绕组绕组主二次绕组附加二次绕组高压侧接入方式接于线电压上接于相电压上用于中性点直接接地系统中心用于中性点不接地或经消弧线圈接地二次额定电压100100准确等级:电压互感器在哪一准确等级下工作,需根据接入的测量仪表,继电器和自动装置等设备对准确等级的要求确定,规定如下:用于发电机、变压器、调相机、厂用馈线、出线等回路中的电度表,及所有计算的电度表,其准确等级要求为0.5级。 供监视估算电能的电度表,功率表和电压继电器等,其准确等级,要求一般为1级。用于估计被测量数值的标记,如电压表等,其准确等级要求较低,要求一般为3级即可。在电压互感器二次回路,同一回路接有几种不同型式和用途的表计时,应按要求准确等级高的仪表,确定为电压互感器工作的最高准确度等级。负荷: (5-11) 5.6.2 电压互感器的选择结果电压互感器的选择结果如下表5-7所示:表5-7 电压互感器的选择结果安装地点型号额定电压(KV)准确级次一次线圈二次线圈辅助线圈110KVJDCF-110(WB)0.10.535KV母线JDJJ2-350.510KV母线JDZJ-100.5 5.7 熔断器的选择高压熔断器是一种保护电器,当其所在电路的电流超过规定值并经一定时间后,它的熔体熔化而分断电流开断电路,熔断器主要用来进行短路保护,用来保护线路变压器及电压互感器等设备。有的熔断器具有过负荷保护功能。熔断器由熔体支持金属体的触头和保护外壳三部分组成。熔断器是最简单的保护电器,它用来保护电气设备免受过载和短路电流的损害 。但其容量小,保护特性较差,一般仅适用于35kV及以下电压等级。熔断器的型式可根据安装地点、使用要求选用。作为电压互感器的短路保护(不可用于过载保护),可选用RN2、RN4、RW10、RXW10等系列。保护电压互感器的高压熔断器,额定电压应高于或等于所在电网额定电压(但限流式则只能等于电网电压),额定电流通常为0.5A。其开断能力应大于或等于安装点的短路电流。依照以上原则,熔断器的选择结果如下表5-8所示:表5-8 熔断器的选择结果型号额定电压(KV)额定电流(A)额定开断容量(MVA)RN2-10100.51000RXW10-35350.510005.8 避雷器选择5.8.1 避雷器的配置原则:(1) 配电装置的每组母线上均应装设避雷器,就近接入接地网,并加设集中接地装置;(2) 220kV及以下变压器的电气距离超过允许值时,变压器附近应增设一组避雷器;(3) 三绕组变压器中压侧或低压侧可能会开路运行时,应在其出线处设置一组避雷器;(4) 下列情况的变压器中性点应装设避雷器: 直接接地系统中,变压器中性点为分级绝缘且装有隔离开关时; 直接接地系统中,变压器中性点为全绝缘,但变压所为单进线且为单台变压器运行时。5.8.2 避雷器的选择依据以上原则,首先确定需要避雷器的位置(标与主接线图中),再按照下面的方法选择各个位置避雷器的型号。(1) 型式选择10kV及以下的配电系统、电缆终端盒采用配电用普通阀FS型避雷器;3220kV发电厂、变电所的配电装置采用电站用普通阀FZ型避雷器。(2) 避雷器灭弧电压选择避雷器的灭弧电压(又称避雷器的额定电压),应按设备上可能出现的允许最大工频过电压选择。在220kV及以下电网中,一般直接反映在电网接地系数上。故避雷器的灭弧电压应为: (5-12) 式中 避雷器灭弧电压有效值(kV); 接地系数,对非直接接地,20kV及以下=1.1,35kV及以上=1.0;对直接接地系统=0.8;最高运行线电压(kV)。5.8.3 避雷器选择结果根据以上原则及计算,避雷器选择结果如下表5-9所示:表5-9 避雷器的选择结果型号额定电压(KV)灭弧电压(KV)工频放电电压(KV)冲击放电电压幅值(KV)FZ-35354184104134FZ-101012.7263145FZ-110110126254312375第6章 变电站防雷规划6.1 防雷规划原则变电所可采用的防雷措施有:用避雷针保护全所电气设备不受直接雷击,用进线段避雷线防止架空进线受直接雷击,用避雷器保护变电所的电气设备不受雷电侵入波的损坏。6.1.1 避雷器的配置原则(1) 各汇流母线应安装一组避雷器,且与电压互感器共用一组隔离开关布置在同一间隔中;(2) 三绕组变压器,三相自耦变压器三侧靠近主变处均应安装一组避雷器,以防止一侧开路,另一侧发生过电压;(3) 双绕组变压器高压侧是否安装避雷器,视电压等级和主变距离高压配电装置的距离而决定;(4) 对于110kV及以上变压器,如采用分极绝缘,中性点应安装一只比其额定电压低一级的避雷器。6.1.2 避雷针的配置原则(1) 变电所的所有建(构)筑物应在避雷针的保护范围内;(2) 110kV及以上配电装置,一般可将避雷针装在配电装置的架构或房顶上。但是在土壤电阻率大于1000·m的地区,宜装设独立避雷针;(3) 35kV及以下高压配电装置的架构或房顶上不宜装设避雷针;(4) 装设在架构上的避雷针与主接地网的地下连接点至主变压器接地线与主接地网的地下连接点之间,沿接地体的长度不得小于15m。(5) 独立避雷针不应设在人经常通行的地方。避雷针及其接地装置与道路和出入口等处的距离不宜小于3m。(6) 独立避雷针宜设置独立的接地装置。(7) 独立避雷针与配电装置带电部分的空中距离,以及避雷针的接地装置与变电站接地网间的地中距离应符合规程的要求。6.1.3 进线保护的配置原则(1) 在离变电站12km内进线段上加强防雷措施。出入变电站的35110kV无避雷线的线路,要在其靠近变电站的12km线路上加装避雷线。全线有避雷线的线路要采取措施提高变电站附近2km长线路的耐雷水平。(2) 110kV及以上的变电所,可将线路的避雷线引接到出线门型架构上,当土壤电阻率大于1000·m时,应装设集中接地装置。35kV、66kV变电所,在土壤电阻率不大于500·m的地区,允许将线路的避雷线引接到出线门型架构上,但应装设集中接地装置。当土壤电阻率大于500·m时,避雷线应架设到终端杆塔为止。从线路终端杆塔到变电所的一档线路的保护,可采用独立避雷针,也可在线路终端杆塔上避雷针。6.2 防雷规划结果6.2.1 直击雷保护110kV配电装置和主变压器为户外布置,在110kV主变压器进线门型架上设一支总高30m的避雷针,保护110kV配电装置和主变压器。避雷针的保护范围未顾及35kV架空进线的零档线,宜在线路终端杆上加设杆顶避雷针。6.2.2 过电压保护主变压器35kV、10kV出口及35、10kV每段母线分别安装带间隙氧化锌避雷器。35kV、10kV每回出线安装带间隙氧化锌避雷器,作为真空断路器的操作过电压保护,也兼作热备用线路断开时终端设备的雷电过电压保护。为保护主变压器中性点绝缘,在主变压器110kV侧中性点装设一台氧化锌避雷器及放电间隙。10kV并联电容器根据规定安装氧化锌避雷器保护。第二部分 设计计算书第1章 短路电流计算取基准容量为,基准电压为,又依公式:;。计算出基准值如下表1-1所示:表1-1 基准值1153710.50.5521.7166.048120.2312.451.001.1 计算变压器电抗 = =10.5=6.5=01.2 系统等值网络图系统等值网络图如下图1-1所示:图1-1 系统等值网络图1.3 短路计算点的选择选择上图中的各点。1.4 短路电流计算(1)点短路时(如图1-2所示):次暂态短路电流标幺值的计算:次暂态(0s)和4s时的短路电流相等,三相短路电流有名值为:两相短路电流为:冲击电流为:短路容量为:图1-2 点短路时的系统网络等值简化 (2) 点短路时(如图1-3所示):图1-3 点短路时的系统网络等值简化次暂态短路电流标幺值的计算:次暂态(0s)和4s时的短路电流相等,三相短路电流有名值为:两相短路电流为:冲击电流为:短路容量为:(3)点短路时(如图1-4所示):图1-4 点短路时的系统网络等值简化次暂态短路电流标幺值的计算:次暂态(0s)和4s时的短路电流相等,三相短路电流有名值为:两相短路电流为:冲击电流为:短路容量为:(4)点短路时(如图1-5所示): 图1-5 点短路时的系统网络等值简化次暂态短路电流标幺值的计算:次暂态(0s)和4s时的短路电流相等,三相短路电流有名值为:两相短路电流为:冲击电流为:短路容量为:(5)点短路时(图1-6所示):图1-6 点短路时的系统网络等值简化次暂态短路电流标幺值的计算:次暂态(0s)和4s时的短路电流相等,三相短路电流有名值为:两相短路电流为:冲击电流为:短路容量为:第2章 电气设备选型2.1 断路器及隔离开关选择为了方便运行管理,每个电压等级按照工作条件最严格的地点,最严格的条件选择一台断路器,该电压等级均采用该型号。2.1.1 110KV电压等级的断路器及隔离开关的选择(1) 主变压器侧断路器的选择:额定电压选择:额定电流的选择:开断电流选择: (点短路电流)选用型断路器,其技术参数如下表2-1所示:表2-1 型断路器的技术参数断路器型号额定电压KV额定电流A最高工作电压KV额定断流容量KA极限通过电流KA热稳定电流KA固有分闸时间S峰值3S1