欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    函数的基本性质知识点总结(共5页).doc

    • 资源ID:14381579       资源大小:288KB        全文页数:5页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    函数的基本性质知识点总结(共5页).doc

    精选优质文档-倾情为你奉上函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也 一定是定义域内的一个自变量(即定义域关于原点对称)。(2)利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称;确定f(x)与f(x)的关系;作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数。(3)简单性质:图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y轴成轴对称;设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)。(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。(3)设复合函数y= fg(x),其中u=g(x) , A是y= fg(x)定义域的某个区间,B是映射g : xu=g(x) 的象集:若u=g(x) 在 A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= fg(x)在A上是增函数;若u=g(x)在A上是增(或减)函数,而y= f(u)在B上是减(或增)函数,则函数y= fg(x)在A上是减函数。(4)判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:任取x1,x2D,且x1<x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方);定号(即判断差f(x1)f(x2)的正负);下结论(即指出函数f(x)在给定的区间D上的单调性)。(5)简单性质奇函数在其对称区间上的单调性相同;偶函数在其对称区间上的单调性相反;在公共定义域内:增函数增函数是增函数; 减函数减函数是减函数;增函数减函数是增函数; 减函数增函数是减函数。若函数是偶函数,则;若函数是偶函数,则.3.函数的周期性如果函数yf(x)对于定义域内任意的x,存在一个不等于0的常数T,使得f(xT)f(x)恒成立,则称函数f(x)是周期函数,T是它的一个周期.性质:如果T是函数f(x)的周期,则kT(kN)也是f(x)的周期.若周期函数f(x)的周期为T,则()是周期函数,且周期为。若,则函数的图象关于点对称; 若,则函数为周期为的周期函数.例题:1.的递减区间是 ;的单调递增区间是 。2.函数的图象( )A.关于轴对称 B. 关于轴对称 C. 关于原点对称 D. 关于直线对称3.设是定义在上的奇函数,若当时,则 。4.定义在上的偶函数满足,若在上递增,则( )A. B C D以上都不对5.讨论函数的单调性。6.已知奇函数是定义在上的减函数,若,求实数 的取值范围。7.已知函数的定义域为N,且对任意正整数,都有。若,求。习题:题型一:判断函数的奇偶性1.以下函数:(1);(2);(3);(4);(5),(6);其中奇函数是 ,偶函数是 ,非奇非偶函数是 。2.已知函数=,那么是( ) A.奇函数而非偶函数 B. 偶函数而非奇函数 C.既是奇函数又是偶函数 D.既非奇函数也非偶函数题型二:奇偶性的应用1.已知偶函数和奇函数的定义域都是(-4,4),它们在上的图像分别如图(2-3)所示,则关于的不等式的解集是_。2.已知,其中为常数,若,则_ 3.下列函数既是奇函数,又在区间上单调递减的是( )A. B. C. D.4.已知函数在R是奇函数,且当时,则时,的解析式为 。5.若是偶函数,且当时, ,则的解集是( ) A. B. C. D. 题型三:判断证明函数的单调性1.判断并证明在上的单调性2.判断在上的单调性题型四:函数的单调区间1.求函数的单调区间。2.下列函数中,在上为增函数的是( ) A. B. C. D.3.函数的一个单调递增区间是( ) A. B. C. D.4.下列函数中,在(0,2)上为增函数的是( ) A.y=-3x+1 B.y=|x+2| C.y= D.y=x2-4x+35.函数y=的递增区间是( ) A.(-,-2) B.-5,-2 C.-2,1 D.1,+)题型五:单调性的应用1.函数f(x)=x2+2(a-1)x+2在区间(-,4)上是减函数,那么实数a的取值范围是( ) A.3,+ ) B.(-,-3 C.-3 D.(-,5 2.已知函数f(x)=2x2-mx+3,当x(-2,+)时是增函数,当x(-,-2)时是减函数,则f(1)等于( ) A.-3 B.13 C.7 D.由m而决定的常数3.若函数在R上单调递增,则实数a, b一定满足的条件是( ) A B.CD4.函数恒成立,则b的最小值为 。5.已知偶函数f(x)在(0,+)上为增函数,且f(2)=0,解不等式flog2(x2+5x+4)0。题型六:周期问题1.奇函数以3为最小正周期,则为( )A.3 B.6 C.-3 D.-62.设f(x)是定义在R上以6为周期的函数,f(x)在(0,3)内单调递增,且y=f(x)的图象关于直线x =3对称,则下面正确的结论是( ) A.f(1.5)<f(3.5)<f(6.5)B.f(3.5)<f(1.5)<f(6.5) C.f(6.5)<f(3.5)<f(1.5)D.f(3.5)<f(6.5)<f(1.5)3.已知为偶函数,且,当时,则( ) A2006 B4 C D4.设是上的奇函数,当时,则等于_5.已知函数f(x)对任意实数x,都有f(xm)f(x),求证:2m是f(x)的一个周期.6、已知函数f(x)对任意实数x,都有f(mx)f(mx),且f(x)是偶函数,求证:2m是f(x)的一个周期.7、函数f(x)是定义在R上的奇函数,且f(1)3,对任意的xR,均有f(x4)f(x)f,求f(2001)的值.专心-专注-专业

    注意事项

    本文(函数的基本性质知识点总结(共5页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开