欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数值实验三--LU分解法的优点(共6页).docx

    • 资源ID:14428663       资源大小:16.63KB        全文页数:6页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数值实验三--LU分解法的优点(共6页).docx

    精选优质文档-倾情为你奉上 数值实验三 LU分解法的优点一:实验目的 给定矩阵A与向量b A= n n-121n32对称n n-1n b=1000 (1) 求A的LU分解(2) 利用A的LU分解解下列方程:A*x=b A2*x=b A3*x=b对第题分析一下,如果先求M=A3,再解M*相比有何缺点?(3)利用A的LU分解法求A-1 ,其中n由自己选择,例如取n=5二:实验原理输入方程阶数n,系数矩阵A,右端向量bK=1,n(分解A=L*U)uk j=ak j-s=1k-1lks*us j (j=k,n) uk k F =0 T 输出失败信息,停 k= F 0 Tli k=(ai k-s=1k-1li sus k)/ukk (i=k+1,n) yk=b k-s=1k-1lk sys ) (k=1,2,n)(解方程组L*y=b) x k=(y k-s=k+1nuk sxs )/ukk (k=n,n-1,1) 输出x1,x2,xn,结束三:实验过程实验代码:Option Base 1 Dim a() As Single, u() As Single, l() As Single Private Sub Command1_Click() Dim m As Integer, p As Integer, n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim a(n, n), u(n, n), l(n, n) For i = 1 To n For j = i To n a(i, j) = n + i - j a(j, i) = n + i - j Next Next t = 0 For k = 1 To n For j = k To n t = 0 For s = 1 To k - 1 t = t + l(k, s) * u(s, j) Next u(k, j) = a(k, j) - t Next If k <> n Then For i = k + 1 To n t = 0 For s = 1 To k - 1 t = t + l(i, s) * u(s, k) Next l(i, k) = (a(i, k) - t) / u(k, k) Next End If Next For m = 1 To n l(m, m) = 1 Next For i = 1 To n For j = 1 To n Text2.Text = Text2.Text & a(i, j) & vbCrLf Next Next For i = 1 To n For j = 1 To n Text3.Text = Text3.Text & l(i, j) & vbCrLf Next Next For i = 1 To n For j = 1 To n Text4.Text = Text4.Text & u(i, j) & vbCrLf Next NextEnd SubPrivate Sub Command2_Click() Dim y() As Single, x() As Single, b() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim y(n), x(n), b(n) b(1) = 1 For i = 2 To n b(i) = 0 Next i For k = 1 To n t = 0 For s = 1 To k - 1 t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * x(s) Next x(k) = (y(k) - t) / u(k, k) Next For i = 1 To n Text5.Text = Text5.Text & x(i) & vbCrLf Next End SubPrivate Sub Command3_Click() Dim y() As Single, x() As Single, b() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim y(n), x(n), b(n) b(1) = 1 For i = 2 To n b(i) = 0 Next i For i = 1 To 2 For k = 1 To n t = 0 For s = 1 To (k - 1) t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * x(s) Next x(k) = (y(k) - t) / u(k, k) Next For j = 1 To n b(j) = x(j) Next Next For i = 1 To n Text6.Text = Text6.Text & b(i) & vbCrLf NextEnd SubPrivate Sub Command4_Click() Dim y() As Single, x() As Single, b() As Single, v() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim y(n), x(n), b(n) b(1) = 1 For i = 2 To n b(i) = 0 Next i For i = 1 To 3 For k = 1 To n t = 0 For s = 1 To (k - 1) t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * x(s) Next x(k) = (y(k) - t) / u(k, k) Next For j = 1 To n b(j) = x(j) Next Next For i = 1 To n Text7.Text = Text7.Text & b(i) & vbCrLf NextEnd SubPrivate Sub Command5_Click() EndEnd SubPrivate Sub Command6_Click() Dim y() As Single, x() As Single, b() As Single, v() As Single Dim n As Integer, k As Integer, i As Integer, j As Integer, s As Integer, t As Single n = Val(Text1.Text) ReDim v(1 To n, 1 To n) ReDim y(1 To n) For i = 1 To n ReDim b(1 To n) b(i) = 1 For k = 1 To n t = 0 For s = 1 To k - 1 t = t + l(k, s) * y(s) Next y(k) = b(k) - t Next For k = n To 1 Step -1 t = 0 For s = k + 1 To n t = t + u(k, s) * v(s, i) Next v(k, i) = (y(k) - t) / u(k, k) Next Next For i = 1 To n For j = 1 To n Text8.Text = Text8.Text & v(i, j) & vbCrLf Next Next End Sub四:实验结果当n=10时A*x=b的解x1=【0 .,-0.,-3.E-07,2.5836E-07,-1.E-07,8.E-08,-5.E-08,2.E-08,-3.E-08,4.E-02】-1A2*x=b 的解为 x2=【0.,-0.,0.,8.E-07,-4.E-07,3.E-07,-2.65427E-07,9.E-08,-2.E-02,4.E-02】-1A3*x=b的解为 x3=【0.,-1.,0.,-0.,-1.1815E-069.E-07,-7.E-07,1.E-02,-4.E-02,6.E-02】-1五:实验分析LU分解法比较简便迅速,当解多个系数矩阵为A的线性方程做时,LU分解法就显得特别优越,只要对系数矩阵做一次LU分解,以后只要解三角形方程即可。也可以更具系数矩阵的形状来设计算法专心-专注-专业

    注意事项

    本文(数值实验三--LU分解法的优点(共6页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开