七年级数学教学小结(共5页).doc
精选优质文档-倾情为你奉上七年级数学教学小结 本学期,为适应新时期教学工作的要求,我从各方面严格要求自己,认真钻研新课标理念,改进教法,认真对待工作中的每一个细节,积极向其他教师请教教学中出现的问题,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。为总结过去,挑战明天,更好地干好今后的工作,现将本学期本人的的教学工作做一简要小结:本学期本人始终拥护国家的教育方针、政策,始终拥护国家目前进行的新课程改革,始终坚持教育的全面性和终身性发展。热爱教育事业,热爱自己所教育的每一个学生。严格遵守学校的各项规章制度,不迟到早退,积极参加各项活动及学习,团结同志,积极协调工作中的各个方面。 我在教学中的主要环节是以下几方面:一、做好课前准备工作 除认真钻研教材,研究教材的重点、难点、关键,吃透教材外,还深入了解学生,根据不同类型的学生拟定了课堂上的辅导、教学方案,使课堂教学中的辅导有针对性,避免盲目性,提高了实效。二、增强上课技能,提高教学质量使讲解清晰化,准确化,条理化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主观能动作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次学生的学习需求和学习能力,让各个层次的学生都得到提高。 三、虚心请教其他老师。 在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听优秀老师的课,学习别人的优点,克服自己的不足,征求他们的意见,改进工作。 四、认真批改作业, 布置作业做到精读精练。有针对性,有层次性。 在设置作业中,仔细阅读教材,搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出及时反馈,针对作业中的问题确定个别辅导的学生,并对他们进行及时的辅导。 五、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩。 2014年1月9日初一七年级数学上册期末考试试卷分析 陈乃安 2014年元月16日一、试卷特点今年数学试题覆盖初一年级上学期几乎全部的内容,考察内容比较全面,同时考察内容也比较注重基础试题。整份试卷的结构还算稳定,分值分配还算合理,试题内容覆盖面宽,考查的各个知识点分布适当,知识结构合理,难度偏高。试卷表面上看比较容易,偏向基础知识的考察,实际上学生在做题时,却发现有一定的难度。考试结果对学生的基本计算能力、逻辑思维能力,运用知识能力等水平要求较高。(1)试题的综合运算性增强。一道试题不只考查一两个知识点,而是前后章节揉在一起综合考查。要求考生必须上下融会贯通,全面分析,绝不能一叶障目,以偏代全,否则会劳而无效。与此同时,试题的解法也不单一,以考查考生的灵活运算能力。(2)试题的论证性较强。这类考题是必不可少的,也是非常重要的,其目的是考查学生逻辑推理和抽象思维的能力。(3)试题更注重对应用能力的考查。为了考查学生综合应用方面的能力,或者说考查考生运用所学知识解决实际问题的能力。二、考试得分分布情况第一大题选择题在班级得分情况不错,但其中第8小题失分较多。选择题的第10,11,13小题都是属于失分多的题目。第二大题是填空题,得分不太理想。第17题要求求52°角的补角和余角,有些同学把这两个搞反了,说明对这个知识掌握还不够。第三大题计算题比较简单。却比预料中的要差。特别是第(3)小题,班上不少同学没有做,没有掌握去括号合并同类项的法则。第四大题解答题得分都不理想,第(1)小题是属于简单的逻辑求解问题,但学生们对于定理的掌握不够另外对于数学语言的表达能力不到位照成失分。第(2)小题是证明过程的填空,在改卷过程中发现学生对于“两直线平行,内错角相等”与“内错角相等,两直线平行”的区别不掌握,把它们填颠倒了。第五大题是实际生活的应用题,学生由于不理解题意,“不足1千米的以1千米计算”,7.4千米应该当做8千米来计算,学生在求解时没有正确带入。第六题是属于统计问题,得分情况较好,学生对于公式“频率=频数/总的人数”掌握较好,基本上满分12分都能得到8分。三、学生问题分析1、基础知识不扎实,基本技能的训练不到位。(1)对初一年级数学中的概念、法则、性质、公式、公理、定理的理解、存储、提取、应用均存在明显的差距。不理解概念的实质,不理解知识形成发展过程,死记硬背,因而不能在一定的数学情境中正确运用概念,不能正确辨明数学关系,导致运算、推理发生错误。(2)运算技能偏低,训练不到位,由此造成的失分现象举足轻重 计算上产生的错误几乎遍及所有涉及到计算的问题。我们的考生的确存在一批运 算上的低能儿,运算能力差是造成他们数学成绩偏低的主要原因之一。其表现是:算理不清,不能正确应用符号语言表明数学关系,计算技能低,不能按照一定的程序步骤进行运算,不善于通过观察题目的特点寻求设计合理简捷的运算途径,造成解题速度慢,在大量的“相对难度”的试题上浪费了时间 。(3)在推理论证过程中不能合乎逻辑地、准确地表述自己的思想,出现层次不清、逻辑不严密、语言表述混乱的现象。第四大题就是这种情况。(4)刚开始接触几何,难免出现畏难心理,相对于代数,几何所涉及的概念、观念让他们有点无所适从。接受程度参差不齐。2、数学思想方法的体验、理解、运用还有一定的差距。近年来对数学思想方法的教学要求有所加强,学生对数学思想方法的理解运用有了明显的提高,但对于数形结合法、分类讨论等的理解运用还有一定的差距。3、以思维为核心的一般能力有待于提高,解决综合问题的数学能力总体尚处于较低水准,这主要体现在如下几个方面。(1)阅读理解能力有待于提高。审不清题意,尤其不能正确理解关键词的意义。因而不能正确辨明数学关系,导致解题失误。(2)对数据的处理能力较低,不善于分析处理数据。(3)以辨识、构造几何图形的能力较低,是造成解题失误的重要原因。(4)即便是优生对于建立在严格逻辑推理以及抽象的数学运算基础上的综合题的解题能力也处于较低水平。四、教学建议1、加强基础知识的理解、记忆和解题基本方法的掌握,夯实基础。从试卷来看,部分学生失分还是由于基础知识、基本技能掌握的不够牢固所造成的。因此教师在平时的教学中还要重视基础知识、基本方法和基本技能的训练。基本概念一定要落实到位,熟悉各种表述方式,正确使用数学符号;将基础知识打扎实。2、继续围绕主干知识,突出重点。在复习中仍要进一步围绕主干知识进行专题复习,做到重点突出,对每一个问题都要讲清楚、讲全面、讲透彻,在此基础上适当增加练习的量,确保学生该得到的分数能够拿到手。3、注重思想方法的渗透。对于重要的思想方法,例如数形结合法等,在平时学习中应给予足够的重视,点滴积累,细心体会,理解其实质及应用;作业书写要规范化,不可随心所欲,该用什么符号就用什么符号,表述要清晰。4、缩小后进面。对基础相对较差的学生,需将知识内容一点点落实到位,让其每节课都有一点收获,耐心指导,千万不要甩掉他们。给优生一定的自由度,提高学生的质疑能力,这样可提高他们的学习兴趣,以期高效。专心-专注-专业