欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教版高中数学必修五A知识点整理及重点题型梳理(共9页).doc

    • 资源ID:14465197       资源大小:576KB        全文页数:9页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教版高中数学必修五A知识点整理及重点题型梳理(共9页).doc

    精选优质文档-倾情为你奉上人教版高中数学必修五知识点梳理重点题型(常考知识点)巩固练习【巩固练习】正弦定理【学习目标】1.通过对直角三角形边角间数量关系的研究,发现正弦定理,初步学会运用由特殊到一般的思维方法发现数学规律;2.会利用正弦定理解决两类解三角形的问题;(1)已知两角和任意一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而求出其它边角). 【要点梳理】要点一、学过的三角形知识1.中(1)一般约定:中角A、B、C所对的边分别为、;(2);(3)大边对大角,大角对大边,即; 等边对等角,等角对等边,即;(4)两边之和大于第三边,两边之差小于第三边,即,.2.中,(1),(2)(3),;,要点二、正弦定理及其证明正弦定理:在一个三角形中各边和它所对角的正弦比相等,即:直角三角形中的正弦定理的推导证明:, , ,即:, 斜三角形中的正弦定理的推导证明:法一:向量法(1)当为锐角三角形时过作单位向量垂直于,则+= 两边同乘以单位向量,得(+)=,即, ,同理:若过作垂直于得: ,(2)当为钝角三角形时设,过作单位向量垂直于向量,同样可证得:法二:圆转化法(1)当为锐角三角形时如图,圆O是的外接圆,直径为,则,(为的外接圆半径)同理:,故:(2)当为钝角三角形时如图,.法三:面积法任意斜中,如图作,则同理:,故,两边同除以即得:要点诠释:(1)正弦定理适合于任何三角形;(2)可以证明(为的外接圆半径);(3)每个等式可视为一个方程:知三求一。 (4)利用正弦定理可以解决下列两类三角形的问题:已知两个角及任意边,求其他两边和另一角;已知两边和其中边的对角,求其他两个角及另一边。要点三、解三角形的概念一般地,我们把三角形的各内角以及它们所对的边叫做三角形的几何元素.任何一个三角形都有六个元素:三边、和三角.在三角形中,由已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.有了关于解三角形的有关定理(如勾股定理、三角形的内角和定理、正弦定理,还有即将学习的余弦定理等),三角学特别是测量学得到了一次飞跃,它可以由已知的三角形的边和角来推断未知的边和角.要点四、正弦定理在解三角形中的应用利用正弦定理,可以解决以下两类有关三角形的问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角;要点诠释:已知a,b和A,用正弦定理求B时的各种情况;(1)若A为锐角时:如图:(2)若A为直角或钝角时:判断三角形形状判断三角形形状的思路通常有以下两种:(1)化边为角;(2)化角为边.对条件实施转化时,考虑角的关系,主要有:(1)两角是否相等?(2)三个角是否相等?(3)有无直角、钝角?考查边的关系,主要有:(1)两边是否相等?(2)三边是否相等要点诠释:对于求解三角形的题目,一般都可有两种思路。但要注意方法的选择,同时要注意对解的讨论,从而舍掉不合理的解。比如下面例2两种方法不同,因此从不同角度来对解进行讨论。此外,有的时候还要对边角关系(例如,大边对大角)进行讨论从而舍掉不合理的解.【典型例题】类型一:正弦定理的简单应用:【正弦定理 例1】例1已知在中,求和B.【答案】【解析】, , ,又,【总结升华】1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三:【变式1】(2015 广东高考)设ABC的内角A,B,C的对边分别为a,b,c.若,则b=_.【答案】,又,故,所以 由正弦定理得,所以b=1。【变式2】在中,已知,求【答案】根据正弦定理,得.【变式3】(2016 宝鸡一模)在, ,则A等于( ) A. B. C. D. 【答案】由正弦定理可得: , , 故选B。例2在,求和, 【解析】由正弦定理得:,(方法一), 或,当时,(舍去);当时,(方法二), , 即为锐角, ,【总结升华】1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。2. 在利用正弦定理求角时,因为,所以要依据题意准确确定角的范围,再求出角.3.一般依据大边对大角或三角形内角和进行角的取舍.举一反三:【正弦定理 例3】【变式1】在中, ,求和【答案】, , 或当时,;当时,;所以,或【变式2】在中, , 求和;【答案】 , , 或当时,;当时,(舍去)。【变式3】在中,, , 求.【答案】由正弦定理,得., ,即 类型二:正弦定理的综合运用例3.(2015 湖南高考文)设的内角的对边分别为。(I)证明:;(II)若,且为钝角,求。【答案】(I)略;(II) 【思路点拨】(I)由题根据正弦定理结合所给已知条件可得,所以 ;(II)根据两角和公式化简所给条件可得,可得,结合所给角B的范围可得角B,进而可得角A,由三角形内角和可得角C.【解析】(I)由及正弦定理,得,所以。 (II)因为 有()知,因此,又为钝角,所以,故,由知,从而,综上所述,【总结升华】本题主要考查正弦定理、三角恒等变换等基础知识,考查综合运用知识解决问题的能力。举一反三:【变式1】在ABC中,已知a5,B105°,C15°,则此三角形的最大边的长为_【答案】在ABC中,大角对大边,故b为最大边长,A180°(BC)180°(105°15°)60°.据正弦定理b.【变式2】(2016 浙江文)在ABC中,内角A,B,C所对的边分别为a,b,c已知b+c=2acos B()证明:A=2B;()若cos B=,求cos C的值【答案】 (1)由正弦定理得,故,于是,又,故,所以或,因此,(舍去)或,所以,.(2)由,得,故,.类型三:利用正弦定理判断三角形的形状例4.在中,若试判断的形状.【解析】由已知条件及正弦定理可得,为三角形的内角,或,所以为等腰三角形或直角三角形。【总结升华】已知三角形中的边角关系式,判断三角形的形状,有两条思路:其一化边为角,再进行三角恒等变换求出三个角之间的关系式;其二化角为边,再进行代数恒等变换求出三条边之间的关系式。举一反三:【变式】在ABC中,试判断三角形的形状.【答案】利用正弦定理将边转化为角.又 0A,B,AB 即故此三角形是等腰三角形.专心-专注-专业

    注意事项

    本文(人教版高中数学必修五A知识点整理及重点题型梳理(共9页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开