MATLAB程序设计与应用课后实验答案(共49页).doc
精选优质文档-倾情为你奉上1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。(1) (2) ,其中(3) (4) ,其中t=0:解:M文件:z1=2*sin(85*pi/180)/(1+exp(2)x=2 1+2*i; 5;z2=1/2*log(x+sqrt(1+x2) a=:;z3=(exp.*a)-exp.*a)./2.*sin(a+log(+a)./2)t=0:;z4=(t>=0&t<1).*(t.2)+(t>=1&t<2).*(t.2-1)+(t>=2&t<3) .*(t.2-2*t+1)运算结果:z1=2*sin(85*pi/180)/(1+exp(2)x=2 1+2*i; 5;z2=1/2*log(x+sqrt(1+x2) a=:;z3=(exp.*a)-exp.*a)./2.*sin(a+log(+a)./2)t=0:;z4=(t>=0&t<1).*(t.2)+(t>=1&t<2).*(t.2-1)+(t>=2&t<3) .*(t.2-2*t+1)z1 = z2 = - + + - z3 = Columns 1 through 4 + + + + Columns 5 through 8 + + + + Columns 9 through 12 + + + + Columns 13 through 16 + + + + Columns 17 through 20 + + + + Columns 21 through 24 + + + + Columns 25 through 28 + + + Columns 29 through 32 Columns 33 through 36 Columns 37 through 40 Columns 41 through 44 Columns 45 through 48 Columns 49 through 52 Columns 53 through 56 Columns 57 through 60 Column 61 z4 = 0 0 2. 已知:求下列表达式的值:(1) A+6*B和A-B+I(其中I为单位矩阵)(2) A*B和A.*B(3) A3和A.3(4) A/B及BA(5) A,B和A(1,3,:);B2解: M 文件:A=12 34 -4;34 7 87;3 65 7;B=1 3 -1;2 0 3;3 -2 7; A+6.*B A-B+eye(3) A*B A.*B A3 A.3 A/B BA A,B A(1,3,:);B2运算结果:A=12 34 -4;34 7 87;3 65 7;B=1 3 -1;2 0 3;3 -2 7; A+6.*B A-B+eye(3) A*B A.*B A3 A.3 A/B BA A,B A(1,3,:);B2ans = 18 52 -10 46 7 105 21 53 49ans = 12 31 -3 32 8 84 0 67 1ans = 68 44 62 309 -72 596 154 -5 241ans = 12 102 4 68 0 261 9 -130 49ans = 37226 48604 78688 ans = 1728 39304 -64 39304 343 27 343ans = ans = ans = 12 34 -4 1 3 -1 34 7 87 2 0 3 3 65 7 3 -2 7ans = 12 34 -4 3 65 7 4 5 1 11 0 19 20 -5 403. 设有矩阵A和B(1) 求它们的乘积C。(2) 将矩阵C的右下角3×2子矩阵赋给D。(3) 查看MATLAB工作空间的使用情况。解:. 运算结果:E=(reshape(1:1:25,5,5)'F=3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11;C= E*FH=C(3:5,2:3)C = 93 150 77 258 335 237 423 520 397 588 705 557 753 890 717H = 520 397 705 557 890 7174. 完成下列操作:(1) 求100,999之间能被21整除的数的个数。(2) 建立一个字符串向量,删除其中的大写字母。 解:(1) 结果:m=100:999;n=find(mod(m,21)=0);length(n)ans = 43(2). 建立一个字符串向量 例如:ch='ABC123d4e56Fg9'则要求结果是:ch='ABC123d4e56Fg9'k=find(ch>='A'&ch<='Z');ch(k)=ch =123d4e56g9实验二 MATLAB矩阵分析与处理1. 设有分块矩阵,其中E、R、O、S分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证。解: M文件如下;输出结果:S = 1 0 0 2A = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ans = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0由ans,所以2. 产生5阶希尔伯特矩阵H和5阶帕斯卡矩阵P,且求其行列式的值Hh和Hp以及它们的条件数Th和Tp,判断哪个矩阵性能更好。为什么?解:M文件如下:输出结果:H = P = 1 1 1 1 1 1 2 3 4 5 1 3 6 10 15 1 4 10 20 35 1 5 15 35 70Hh = Hp = 1Th = +005Tp = +003因为它们的条件数Th>>Tp,所以pascal矩阵性能更好。3. 建立一个5×5矩阵,求它的行列式值、迹、秩和范数。解: M文件如下:输出结果为:A = 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9d = t = 65c1 = c2 = cinf = 4. 已知求A的特征值及特征向量,并分析其数学意义。解:M文件如图:输出结果为:V = D = 0 0 0 0 0 0 数学意义:V的3个列向量是A的特征向量,D的主对角线上3个是A的特征值,特别的,V的3个列向量分别是D的3个特征值的特征向量。5. 下面是一个线性方程组:(1) 求方程的解。(2) 将方程右边向量元素b3改为再求解,并比较b3的变化和解的相对变化。(3) 计算系数矩阵A的条件数并分析结论。解: M文件如下:输出结果:X = X2 = C = +003由结果,X和X2的值一样,这表示b的微小变化对方程解也影响较小,而A的条件数算得较小,所以数值稳定性较好,A是较好的矩阵。6. 建立A矩阵,试比较sqrtm(A)和sqrt(A),分析它们的区别。解:M文件如下:运行结果有:A = 16 6 18 20 5 12 9 8 5b1 = b2 = b = 分析结果知:sqrtm(A)是类似A的数值平方根(这可由b1*b1=A的结果看出),而sqrt(A)则是对A中的每个元素开根号,两则区别就在于此。实验三 选择结构程序设计一、实验目的1. 掌握建立和执行M文件的方法。2. 掌握利用if语句实现选择结构的方法。3. 掌握利用switch语句实现多分支选择结构的方法。4. 掌握try语句的使用。二、实验内容1. 求分段函数的值。用if语句实现,分别输出x=,时的y值。解:M文件如下:运算结果有:f(-5)y = 14>> f(-3)y = 11>> f(1)y = 2>> f(2)y = 1>> fy = >> f(3)y = 5>> f(5)y = 192. 输入一个百分制成绩,要求输出成绩等级A、B、C、D、E。其中90分100分为A,80分89分为B,79分79分为C,60分69分为D,60分以下为E。要求:(1) 分别用if语句和switch语句实现。(2) 输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。解:M文件如下试算结果:score=88grade =Bscore=123错误:输入的成绩不是百分制成绩3. 硅谷公司员工的工资计算方法如下:(1) 工作时数超过120小时者,超过部分加发15%。(2) 工作时数低于60小时者,扣发700元。(3) 其余按每小时84元计发。试编程按输入的工号和该号员工的工时数,计算应发工资。解:M文件下4. 设计程序,完成两位数的加、减、乘、除四则运算,即产生两个两位随机整数,再输入一个运算符号,做相应的运算,并显示相应的结果。解:M文件如下;运算结果例:a = 38b = 33输入一个运算符:c =falsea = 92b = 40输入一个运算符:+c = 1325. 建立5×6矩阵,要求输出矩阵第n行元素。当n值超过矩阵的行数时,自动转为输出矩阵最后一行元素,并给出出错信息。解:M文件如下:运算结果如下:输入一个5行6列矩阵A=1 2 3 4 5 5;2 3 4 5 7 6;2 2 2 2 2 3;11 2 3 9 7 3;2 3 4 5 6 7输入一正整数n=4 11 2 3 9 7 3输入一个5行6列矩阵A=1 2 3 4 5 5;2 3 4 5 7 6;2 2 2 2 2 3;11 2 3 9 7 3;2 3 4 5 6 7输入一正整数n=6 2 3 4 5 6 7ans =Error using => dispToo many input arguments.实验四 循环结构程序设计一、实验目的1. 掌握利用for语句实现循环结构的方法。2. 掌握利用while语句实现循环结构的方法。3. 熟悉利用向量运算来代替循环操作的方法。二、实验内容1. 根据,求的近似值。当n分别取100、1000、10000时,结果是多少?要求:分别用循环结构和向量运算(使用sum函数)来实现。解:M文件如下:运行结果如下:K>> %循环结构计算pi值y=0;n=input('n=');for i=1:n y=y+1/i/i;endpi=sqrt(6*y)n=100pi = n=1000pi = n=10000pi =%向量方法计算Pi值n=input('n=');i=1./(1:n).2;s=sum(i);pi=sqrt(6*s)n=100pi = n=1000pi = n=10000pi =2. 根据,求:(1) y<3时的最大n值。(2) 与(1)的n值对应的y值。解:M文件如下:运行结果如下:K>> y=0;n=0;while y<3 n=n+1; y=y+1/(2*n-1); endynif y>3 n=n-1;endny = n = 57n = 563. 考虑以下迭代公式:其中a、b为正的学数。(1) 编写程序求迭代的结果,迭代的终止条件为|xn+1-xn|10-5,迭代初值x0=,迭代次数不超过500次。(2) 如果迭代过程收敛于r,那么r的准确值是,当(a,b)的值取(1,1)、(8,3)、(10,时,分别对迭代结果和准确值进行比较。解:M文件如下:运算结果如下;请输入正数a=1请输入正数b=1x = r = r = s = 请输入正数a=8请输入正数b=3x = r = r = s =0.0请输入正数a=10请输入正数b=x = r = r = s = 4. 已知求f1f100中:(1) 最大值、最小值、各数之和。(2) 正数、零、负数的个数。解:M文件以下是运算结果:max(f)=2635min(f)=-3528sum(f)=-1951c1=49c2=2c3=495. 若两个连续自然数的乘积减1是素数,则称这两个边疆自然数是亲密数对,该素数是亲密素数。例如,2×3-1=5,由于5是素数,所以2和3是亲密数,5是亲密素数。求2,50区间内:(1) 亲密数对的对数。(2) 与上述亲密数对对应的所有亲密素数之和。解:M文件:运算结果为:j = 29s = 23615实验五 函数文件一、实验目的1. 理解函数文件的概念。2. 掌握定义和调用MATLAB函数的方法。二、实验内容1. 定义一个函数文件,求给定复数的指数、对数、正弦和余弦,并在命令文件中调用该函数文件。解:M文件如下:函数文件:function e,l,s,c = fushu(z)%fushu 复数的指数,对数,正弦,余弦的计算%e 复数的指数函数值%l 复数的对数函数值%s 复数的正弦函数值%c 复数的余弦函数值e=exp(z);l=log(z);s=sin(z);c=cos(z);命令文件M:z=input('请输入一个复数z=');a,b,c,d=fushu(z)运算结果如下:z=input('请输入一个复数z=');a,b,c,d=fushu(z)请输入一个复数z=1+ia = + b = + c = + d = - 2. 一物理系统可用下列方程组来表示:从键盘输入m1、m2和的值,求a1、a2、N1和N2的值。其中g取,输入时以角度为单位。要求:定义一个求解线性方程组AX=B的函数文件,然后在命令文件中调用该函数文件。解: M文件函数文件:function X= fc(A,B)%fc fc是求解线性方程的函数%A A是未知矩阵的系数矩阵X=AB; 命令M文件:clc;m1=input('输入m1=');m2=input('输入m2=');theta=input('输入theta=');x=theta*pi/180;g=;A=m1*cos(x) -m1 -sin(x) 0 m1*sin(x) 0 cos(x) 0 0 m2 -sin(x) 0 0 0 -cos(x) 1;B=0;m1*g;0;m2*g;X=fc(A,B) 运算结果:输入m1=1输入m2=1输入theta=30X = 3. 一个自然数是素数,且它的数字位置经过任意对换后仍为素数。例如13是绝对素数。试求所有两位绝对素数。要求:定义一个判断素数的函数文件。解:M文件:函数文件function p = prime(p)% 输入p的范围,找出其中的素数m=p(length(p);for i=2:sqrt(m) n=find(rem(p,i)=0&p=i); p(n)=; %将p中能被i整除,而却不等于i的元素,即下标为n的元素剔除,其余的即为素数endp;命令文件:clc;p=10:99;p=prime(p); %找出10到99内的所有素数p=10*rem(p,10)+(p-rem(p,10)/10; %将p素数矩阵每个元素个位十位调换顺序p=prime(p) %再对对换后的素数矩阵找出所有的素数运算结果:p = 11 31 71 13 73 17 37 97 794. 设,编写一个MATLAB函数文件,使得调用f(x)时,x可用矩阵代入,得出的f(x)为同阶矩阵。解:函数文件:function f= fx(x)%fx fx求算x矩阵下的f(x)的函数值A=+(x-2).2;B=+(x-3).4;f=1./A+1./B;命令文件:clc;x=input('输入矩阵x=');f=fx(x)运算结果:>> x=input('输入矩阵x=');f=fx(x)输入矩阵x=7 2;12 5f = 5. 已知(1) 当f(n)=n+10ln(n2+5)时,求y的值。(2) 当f(n)=1×2+2×3+3×4+.+n×(n+1)时,求y的值。解:(1)函数文件:function f=f(x)f=x+10*log(x2+5);命令文件:clc;n1=input('n1=');n2=input('n2=');n3=input('n3=');y1=f(n1);y2=f(n2);y3=f(n3);y=y1/(y2+y3)运算结果如下:n1=40n2=30n3=20y = (2).函数文件function s= g(n)for i=1:ng(i)=i*(i+1);ends=sum(g);命令文件:clc;n1=input('n1=');n2=input('n2=');n3=input('n3=');y1=g(n1);y2=g(n2);y3=g(n3);y=y1/(y2+y3)运算结果如下:n1=40n2=30n3=20y = 实验六 高层绘图操作一、实验目的1. 掌握绘制二维图形的常用函数。2. 掌握绘制三维图形的常用函数。3. 掌握绘制图形的辅助操作。二、实验内容1. 设,在x=02区间取101点,绘制函数的曲线。解:M文件如下:clc;x=linspace(0,2*pi,101);y=+3*sin(x)./(1+x.2);plot(x,y)运行结果有:2. 已知y1=x2,y2=cos(2x),y3=y1×y2,完成下列操作:(1) 在同一坐标系下用不同的颜色和线型绘制三条曲线。(2) 以子图形式绘制三条曲线。(3) 分别用条形图、阶梯图、杆图和填充图绘制三条曲线。解:(1) M文件:clc;x=-pi:pi/100:pi;y1=x.2;y2=cos(2*x);y3=y1.*y2;plot(x,y1,'b-',x,y2,'r:',x,y3,'k-')运行结果:(2)M文件:clc;x=-pi:pi/100:pi;y1=x.2;y2=cos(2*x);y3=y1.*y2;subplot(1,3,1);plot(x,y1,'b-');title('y1=x2');subplot(1,3,2);plot(x,y2,'r:');title('y2=cos(2x)');subplot(1,3,3);plot(x,y3,'k-');title('y3=y1*y2');.运行结果:(3)M文件:clc;x=-pi:pi/100:pi;y1=x.2;y2=cos(2*x);y3=y1.*y2;subplot(2,2,1);plot(x,y1,'b-',x,y2,'r:',x,y3,'k-');subplot(2,2,2);bar(x,y1,'b');title('y1=x2');subplot(2,2,3);bar(x,y2,'r'); title('y2=cos(2x)');subplot(2,2,4);bar(x,y3,'k');title('y3=y1*y2');由上面的M文件,只要依次将“bar”改为“stairs”、“stem”、“fill”,再适当更改区间取的点数,运行程序即可,即有下面的结果:3. 已知在-5x5区间绘制函数曲线。解:M文件:clc;x=-5:5;y=(x+sqrt(pi)/(exp(2).*(x<=0)+*log(x+sqrt(1+x.2).*(x>0);plot(x,y)运行结果:由图可看出,函数在零点不连续。4. 绘制极坐标曲线=asin(b+n),并分析参数a、b、n对曲线形状的影响。解:M文件如下:clc;theta=0:pi/100:2*pi;a=input('输入a=');b=input('输入b=');n=input('输入n=');rho=a*sin(b+n*theta);polar(theta,rho,'m')采用控制变量法的办法,固定两个参数,变动第三个参数观察输出图象的变化。分析结果:由这8个图知道, 当a,n固定时,图形的形状也就固定了,b只影响图形的旋转的角度;当a,b固定时,n只影响图形的扇形数,特别地,当n是奇数时,扇叶数就是n,当是偶数时,扇叶数则是2n个;当b,n固定时,a影响的是图形大小,特别地,当a是整数时,图形半径大小就是a。5. 绘制函数的曲线图和等高线。其中x的21个值均匀分布-5,5范围,y的31个值均匀分布在0,10,要求使用subplot(2,1,1)和subplot(2,1,2)将产生的曲面图和等高线图画在同一个窗口上。解:M文件:clc;x=linspace(-5,5,21);y=linspace(0,10,31);x,y=meshgrid(x,y);z=cos(x).*cos(y).*exp(-sqrt(x.2+y.2)/4);subplot(2,1,1);surf(x,y,z);title('曲面图');subplot(2,1,2);surfc(x,y,z);title('等高线图');运行结果:6. 绘制曲面图形,并进行插值着色处理。解:M文件:clc;s=0:pi/100:pi/2;t=0:pi/100:3*pi/2;s,t=meshgrid(s,t);x=cos(s).*cos(t);y=cos(s).*sin(t);z=sin(s);subplot(2,2,1);mesh(x,y,z);title('未着色的图形');subplot(2,2,2);surf(x,y,z);title('shading faceted(缺省)');subplot(2,2,3);surf(x,y,z);shading flat;title('shading flat');subplot(2,2,4);surf(x,y,z);shading interp;title('shading interp'); 运行结果有:实验七 低层绘图操作二、实验内容1. 建立一个图形窗口,使之背景颜色为红色,并在窗口上保留原有的菜单项,而且在按下鼠标器的左键之后显示出Left Button Pressed字样。解:M文件如下:clc;hf=figure('color',1 0 0,. 'WindowButtonDownFcn','disp(''Left Button Pressed.'')'); 运行结果:左击鼠标后:2. 先利用默认属性绘制曲线y=x2e2x,然后通过图形句柄操作来改变曲线的颜色、线型和线宽,并利用文件对象给曲线添加文字标注。解:M文件:clc;x=-2:2;y=x.2.*exp(2*x);h=plot(x,y);set(h,'color','linestyle','-',. 'linewidth',2);text,2*exp(2*,'leftarrow x2exp(2x)','fontsize',9);运行结果:3. 利用曲面对象绘制曲面v(x,t)=(2000+)。解:M文件:clc;x=0:2*pi;x,t=meshgrid(x);v=10*exp*x).*sin(2000*pi*x+pi);axes('view',-37,30);hs=surface(x,t,v,'facecolor',. ,'edgecolor','flat');grid on;xlabel('x-axis'); ylabel('y-axis');zlabel('z-axis');title('mesh-surf');pause %按任意键继续set(hs,'FaceColor','flat');text(0,0,0,'曲面');运行结果:按任意键继续:4. 以任意位置子图形式绘制出正弦、余弦、正切和余切函数曲线。5. 生成一个圆柱体,并进行光照和材质处理。 解:M文件:x,y,z=cylinder(3,500); %cylinder是生成柱体的函数surf(x,y,z);title('圆柱体的光照和材料处理');Xlabel('X-axis');Ylabel('Y-axis');Zlabel('Z-axis');axis(-5,5,-5,5,0,1)grid off;light('Color','r','Position',-4,0,0,'style','infinite');shading interp;material shiny;view(0,10);lighting phong;axis off; 运行结果:实验八 数据处理与多项式计算一、实验目的1. 掌握数据统计和分析的方法。2. 掌握数值插值与曲线拟合的方法及其应用。3. 掌握多项式的常用运算。二、实验内容1. 利用MATLAB提供的rand函数生成30000个符合均匀分布的随机数,然后检验随机数的性质:(1) 均值和标准方差。(2) 最大元素和最小元素。(3) 大于的随机数个数占总数的百分比。解:M文件:clc;x=rand(1,30000);mu=mean(x) %求这30000个均匀分布随机数的平均值sig=std(x) %求其标准差1y=length(find(x>); %找出大于数的个数p=y/30000 %大于的所占百分比运行结果:mu = sig = p = 2. 将100个学生5门功课的成绩存入矩阵P中,进行如下处理:(1) 分别求每门课的最高分、最低分及相应学生序号。(2) 分别求每门课的平均分和标准方差。(3) 5门课总分的最高分、最低分及相应学生序号。(4) 将5门课总分按从大到小顺序存入zcj中,相应学生序号存入xsxh。提示:上机调试时,为避免输入学生成绩的麻烦,可用取值范围在45,95之间的随机矩阵来表示学生成绩。解:M文件:clc;t=45+50*ran