七年级数学下学期期末复习讲义-第九章-分式(新版)沪科版(共4页).doc
-
资源ID:14481048
资源大小:147KB
全文页数:4页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
七年级数学下学期期末复习讲义-第九章-分式(新版)沪科版(共4页).doc
精选优质文档-倾情为你奉上第九章 分 式一、 知识总结(一) 分式及其性质 1、分式 (1)定义:一般的,如果a,b表示两个整式,并且b中含有字母,那么式子叫做分式;其中a叫做分式的分子,b叫做分式的分母。 (2)有理式:整式和分式统称为有理式。 (3)分式=0分子=0,且分母0 (分式有意义,则分母0) (4)最简分式:分子和分母没有公因式的分式。 2、分式的性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变 即: (a,b,m都是整式,且) 分式的性质是分式化简和运算的依据。 3、约分:把一个式子的分子分母的公因式约去叫做约分。 注:约分的结果应为最简分式或整式。 约分的方法: 1)若分子、分母均为单项式:先找分子、分母系数的最大公约数, 再找相同字母最低次幂; 2)若分子、分母有多项式:先把多项式因式分解,再找分子、分母的公因式。 (二)分式运算 1、分式的乘除 1)分式乘法法则:两分式相乘,用分子的积做分子,分母的积做分母;即: 2)分式除法法则:两分式相除,将除式的分子、分母颠倒位置后,与被除式相乘; 即: 3)分式乘方法则:分式的乘方就是分子分母分别乘方。即: , 2、分式的加减 1)同分母分式加减:分母不变分子相加减;即: 2)异分母分式加减:先通分,变为同分母的分式相加减, 即: (三)分式方程1、定义:分母中含有未知数的方程叫做分式方程。2、解法: 1)基本思路:分式方程整式方程 2)转化方法:方程两边都乘以各个分式最简公分母,约去分母。 3)一般步骤:分式方程整式方程解整式方程检验 注: 检验的是必不可缺的关键步骤,检验的目的是看是否有增根存在。(四)分式应用列分式方程解决实际问题的一般步骤:审题设未知数,找等量关系列方程 检验(是否有增根,是否符合题意)得出答案二、分式解题中常用的数学思想和技巧1、已知,求的值。 (整体思想、构造法)2、已知,求的值。 (整体思想、构造法)3、已知,求的值。4、已知,求。 (先得到的值,然后按第1题方法做)5、已知,求的值。 (提示:)6、已知,求的值。 (提示:参数法)7、已知,求的值。 (倒数求值法)8、已知,求的值。 (提示:由得)9、已知,求的值。(提示:消元代入法,把其中一个未知数看成常数,用它表示其它的未知数)10、计算:1) (提示:用字母代替数) 2) (提示:局部通分) 3) (提示:假分式可先变形)三、典题练习1、如果分式的值为0,那么x的值是 。2、在比例式9:5=4:3x中,x=_ 。3、计算:=_ 。4、当分式的值相等时,x须满足 。5、把分式中的x,y都扩大2倍,则分式的值 。(填扩大或缩小的倍数)6、下列分式中,最简分式有 个。7、分式方程的解是 。8、若2x+y=0,则的值为 。9、当为何值时,分式有意义?10、当为何值时,分式的值为零?11、已知分式:当x= 时,分式没有意义;当x= _时,分式的值为0;当x=2时,分式的值为_。12、当a=_时,关于x的方程=的解是x=1。13、一辆汽车往返于相距a km的甲、乙两地,去时每小时行m km,返回时每小时行n km,则往返一次所用的时间是_。14、某班a名同学参加植树活动,其中男生b名(b<a)若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树 棵。15、当 时,分式的值与分式的值互为倒数。16、若方程有增根,则增根是 。17、若,则的值是 。18、已知,求的值。19、已知x+=3,则x2+= _ 。20、已知=3,则分式= 。 21、化简求值 (1)(1+)÷(1),其中x=; (2),其中x=。22、解方程: (1)=2; (2)。23、已知方程,是否存在的值使得方程无解?若存在,求出满 足条件的的值;若不存在,请说明理由。24、若,且 ,求、的值。25、小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多,问他第一次在购物中心买了几盒饼干? 专心-专注-专业