欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    东南大学计算方法实验报告(共16页).doc

    • 资源ID:14485099       资源大小:122.50KB        全文页数:16页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    东南大学计算方法实验报告(共16页).doc

    精选优质文档-倾情为你奉上 计算方法与实习实验报告学 院:电气工程学院指导老师:李翠平班 级:姓 名:黄芃菲学 号:实习题一实验1  拉格朗日插值法一、方法原理n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+ynln(x)n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+ y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0)n=2时,称为二次插值或抛物线插值,精度相对高些L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)二、主要思路使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。对节点xi(i=0,1,n)中任一点xk(0<=k<=n)作一n 次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,k-1,k+1,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+ynln(x)上式表明:n 个点xi(i=0,1,k-1,k+1,n)都是lk(x)的零点。可求得lk三计算方法及过程:1.输入节点的个数n                     2.输入各个节点的横纵坐标                     3.输入插值点                     4.调用函数,返回z函数语句与形参说明程序源代码如下:形参与函数类型参数意义int n节点的个数double xn(double *x)存放n个节点的值double yn(double *y)存放n个节点相对应的函数值double p指定插值点的值double fun()函数返回一个双精度实型函数值,即插值点p处的近似函数值  #include<iostream>#include<math.h>using namespace std;#define N 100   double fun(double *x,double *y, int n,double p);void main()int i,n;cout<<"输入节点的个数n:" cin>>n;double xN, yN,p;cout<<"please input xiangliang x= "<<endl;for(i=0;i<n;i+)cin>>xi;cout<<"please input xiangliang y= "<<endl;for(i=0;i<n;i+)cin>>yi;cout<<"please input LagelangrichazhiJieDian p= "<<endl; cin>>p;cout<<"The Answer= "<<fun(x,y,n,p)<<endl;system("pause") ;double fun(double x,double y, int n,double p)double z=0,s=1.0;int k=0,i=0;double LN;while(k<n) if(k=0) for(i=1;i<n;i+)s=s*(p-xi)/(x0-xi);     L0=s*y0;     k=k+1;   else    s=1.0;    for(i=0;i<=k-1;i+)s=s*(p-xi)/(xk-xi);    for(i=k+1;i<n;i+) s=s*(p-xi)/(xk-xi);    Lk=s*yk; k+;for(i=0;i<n;i+)z=z+Li;return z;五实验分析n=2时,为一次插值,即线性插值n=3时,为二次插值,即抛物线插值n=1,此时只有一个节点,插值点的值就是该节点的函数值n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况3<n<100时,也都有相应的答案常用的是线性插值和抛物线插值,显然,抛物线精度相对高些n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。拟合曲线光顺性差  实验2  牛顿插值法 一、方法原理及基本思路在拉格朗日插值方法中,若增加一个节点数据,其插值的多项式需重新计算。现构造一个插值多项式Nn(x),只需对Nn-1(x)作简单修正(如增加某项)即可得到,这样计算方便。利用牛顿插值公式,当增加一个节点时,只需在后面多计算一项,而前面的计算仍有用;另一方面Nn(x)的各项系数恰好又是各阶差商,而各阶差商可用差商公式来计算。由线性代数知,对任何一个不高n次的多项式P(x)=b0b1xb2x2bnxn (幂基) 也可将其写成P(x)=a0a1(xx0)a2(xx0) (xx1)an(xx0) (xxn-1)其中ai为系数,xi为给定节点,可由求出ai  一般情况下,牛顿插值多项式Nn(x)可写成:Nn(x)= a0a1(xx0)a2(xx0) (xx1)an(xx0) (xxn-1)只需求出系数ai,即可得到插值多项式。二、计算方法及过程1.先后输入节点个数n和节点的横纵坐标,插值点的横坐标,最后输入精度e2. 用do-while循环语句得到跳出循环时k的值3.将k值与n-1进行比较,若在达到精度时k<n-1,则输出计算结果;若此时k=n-1,则计算失败!函数语句与形参说明形参与函数类型参数意义int n节点的个数float xMAX存放n个节点的值(从小到大)Float yMAX;存放n个节点相对应的函数值float x0,y0指定插值点的横纵坐标float e精度    程序源代码如下:#include<iostream>#include<math.h>using namespace std;#define MAX 100   void main()  float xMAX,yMAX;   float x0,y0,e,N1;   float N0=0;   int i,k,n;   cout<<"输入节点的个数,n="   cin>>n;   cout<<"请输入插值节点!"<<endl;   for(i=0;i<n;i+) cin>>xi;   cout<<"请输入对应的函数值!"<<endl;   for(i=0;i<n;i+) cin>>yi;   cout<<"请输入插值点,x0="   cin>>x0;   cout<<"请输入精度,e="   cin>>e;   y0=1;  N1=y0;   k=0;   do    k+;           N0=N1;           y0=y0*(x0-xk-1);            for(i=0;i<k;i+) yk=(yk-yi)/(xk-xi);           N1=N0+y0*yk;         while (fabs(N1-N0) > e && k<(n-1);   if (k=(n-1) cout<<"计算失败!"   if (k<(n-1) cout<<"输出结果yx0="<<N1<<endl;system("pause"); 三运行结果测试:题一:已知f(x)=sh(x)的函数表如下:计算f(0.23)的近似值xi00.200.300.50Sh(xi)00.201340.304520.52110                 实习题二1. 用牛顿法求下列方程的根:3)实验代码:#include <stdio.h>#include <math.h>#define N 100#define eps 1e-6#define eta 1e-8float Newton(float(*f)(float),float(*f1)(float),float x0)float x1,d;int k=0;dox1=x0-(*f)(x0)/(*f1)(x0);if(k+>N|fabs(*f1)(x1)<eps)printf("n Newton 迭代发散");break;d=fabs(x1)<1?x1-x0:(x1-x0)/x1;x0=x1;printf("x(%d)=%ft",k,x0);while(fabs(d)>eps&&fabs(*f)(x1)>eta);return x1;float f(float x)return log10(x)+x-2;float fl(float x)return 1.0/(x*log(10)+1;void main()float x0,y0;printf("请输入迭代初值 x0n");scanf("%f",&x0);printf("x(0)=%fn",x0);y0=Newton(f,fl,x0);printf("方程的根为: %fn",y0);运行窗口:实习题三4编写用追赶法解三对角线性方程组的程序,并解下列方程组:2)l 实验代码#include<iostream>#include<cmath>using namespace std;void main()float a=1;float b=-4;float c=1;float d11=0,-27,-15,-15,-15,-15,-15,-15,-15,-15,-15;float l11;float bb11;float y11;float x11;bb1=b;y1=d1;int i;for(i=2;i<11;i+)li=a/bbi-1;bbi=b-li*c;yi=di-li*yi;x10=y10/bb10;for(i=9;1>0;i-)xi=(yi-c*xi+1)/bbi;for(i=1;i<11;i+)cout<<'x'<<i<<':'<<xi<<endl;l 运行窗口#include<stdio.h>#include<string.h>#include<math.h>#include<conio.h>#include<stdlib.h>#define N 11main()float aN=0,0,1,1,1,1,1,1,1,1,1;float bN=0,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4;float cN=0,1,1,1,1,1,1,1,1,1,0;float dN=0,-27,-15,-15,-15,-15,-15,-15,-15,-15,-15;float xN=0,0,0,0,0,0,0,0,0,0,0;float rN=0,0,0,0,0,0,0,0,0,0,0;float yN=0,0,0,0,0,0,0,0,0,0,0;float q;/clrscr();int k;r1=c1/b1;y1=d1/b1;for(k=2;k<N-1;k+)q=bk-rk-1*ak;rk=ck/q;yk=(dk-yk-1*ak)/q;yN-1=(dN-1-yN-2*aN-1)/(bN-1-rN-2*aN-1);xN-1=yN-1;for(k=N-2;k>=1;k-)xk=yk-rk*xk+1;for(k=1;k<N;k+)printf("x%d=%fn",k,xk);getch();return 0 ;l 运行窗口5 雅克比迭代法l 实验代码#include<stdio.h>#include<math.h>#define eps 1e-6#define max 100void Jacobi(float *a,int n,float x) int i,j,k=0; float epsilon,s; float *y=new floatn; for(i=0;i<n;i+)xi=0; while(1) epsilon=0; k+; for(i=0;i<n;i+) s=0; for(j=0;j<n;j+) if(j=i)continue; s+=*(a+i*(n+1)+j)*xj; yi=(*(a+i*(n+1)+n)-s)/(*(a+i*(n+1)+i); epsilon+=fabs(yi-xi); for(i=0;i<n;i+)xi=yi; if(epsilon<eps) printf("迭代次数为:%dn",k);return; if(k>=max) printf("迭代发散");return; delete y;void main() int i; float a45=10,-1,2,0,-11,0,8,-1,3,-11,2,-1,10,0,6,-1,3,-1,11,25; float x4; Jacobi(a0,4,x); for(i=0;i<4;i+)printf("x%d=%fn",i,xi);l 运行窗口高斯-塞德尔迭代法l 实验代码#include<stdio.h>#include<math.h>#define N 500void main()int i;float x4;float c45=10,-1,2,0,-11,0,8,-1,3,-11,2,-1,10,0,6,-1,3,-1,11,25;void GaussSeidel(float *,int,float);GaussSeidel(c0,4,x);for(i=0;i<4;i+)printf("x%d=%fn",i,xi);void GaussSeidel(float *a,int n,float x)int i,j,k=1;float d,dx,eps;for(i=0;i<n;i+)xi=0.0;while(1)eps=0;for(i=0;i<n;i+)d=0;for(j=0;j<n;j+)if(j=i)continue;d+=*(a+i*(n+1)+j)*xj;dx=(*(a+i*(n+1)+n)-d)/(*(a+i*(n+1)+i);eps+=fabs(dx-xi);xi=dx;if(eps<1e-6)printf("迭代次数为:%dn",k);return;if(k>N)printf("迭代发散n");return;k+;l 运行窗口实习题四2. 按下列数据Xi0.300.420.500.580.660.72Yi1.044031.084621.118031.156031.198171.23223作5次插值,并求X1=0.46,X2=0.55,X3=0.60时的函数近似值。l 实验代码#include <stdio.h>#define N 5void Difference(float x,float y,int n)float *f=new floatn+1;int k,i;for(k=1;k<=n;k+)f0=yk;for(i=0;i<k;i+)fi+1=(fi-yi)/(xk-xi);yk=fk;delete f;return;void main()int i;float a,b,c,varx=0.46,vary=0.55,varz=0.60;float xN+1=0.30,0.42,0.50,0.58,0.66,0.72;float yN+1=1.04403,1.08462,1.11803,1.15603,1.19817,1.23223;Difference(x,y,N);a=yN;b=yN;c=yN;for(i=N-1;i>=0;i-)a=a*(varx-xi)+yi;for(i=N-1;i>=0;i-)b=b*(vary-xi)+yi;for(i=N-1;i>=0;i-)c=c*(varz-xi)+yi;printf("Nn(%f)=%fn",varx,a);printf("Nn(%f)=%fn",vary,b);printf("Nn(%f)=%fn",varz,c);l 运行窗口实习题51.1) 试分别用抛物线y=a+bx+cxx和指数曲线y=ae(bx)拟合下列数据:Xi11.522.533.5Yi33.479.50122.65159.05189.15214.15Xi44.555.566.5Yi238.65252.50267.55280.50296.65301.40XI77.58YI310.40318.15325.15实验运行代码:/最小二乘法拟合曲线#include<iostream>#include<cmath>using namespace std;const int n=15;/数据对个数const int m=3;/线性无关函数个数class ColPivotfriend class Approx;private:double cmm+1;double xm;public:ColPivot()for(int i=0;i<m;i+)for(int j=0;j<m+1;j+) cij=0;xi=0;void Cal();void ColPivot:Cal()int i,j,t,k;double p;for(i=0;i<m-1;i+)k=i;for(j=i+1;j<m;j+)if(fabs(cji)>fabs(cki) k=j;if(k!=j)for(j=i;j<m+1;j+)p=cij;cij=ckj;ckj=p;for(j=i+1;j<m;j+)p=cji/cii;for(t=i;t<m+1;t+)cjt-=p*cit;for(i=m-1;i>=0;i-)p=cim;for(j=m-1;j>i;j-)p-=cij*xj;if(cii=0) xi=0;else xi=p/cii;class Approxprivate:double xn,yn,a3,b2;public:void GetValue(double,double);void Para();void Expo();void Show();void Approx:GetValue(double an,double bn)for(int i=0;i<n;i+)xi=ai;yi=bi;void Approx:Para()int i,j,t;ColPivot col;for(i=0;i<3;i+)for(j=0;j<3;j+)for(t=0;t<n;t+) col.cij+=pow(xt,i)*pow(xt,j);for(t=0;t<n;t+) col.ci3+=yt*pow(xt,i);col.Cal();for(i=0;i<3;i+) ai=col.xi;void Approx:Expo()int i,j,t;ColPivot col;for(i=0;i<2;i+)for(j=0;j<2;j+)for(t=0;t<n;t+) col.cij+=pow(xt,i)*pow(xt,j);for(t=0;t<n;t+) col.ci3+=log(yt)*pow(xt,i);col.Cal();b0=exp(col.x0);b1=col.x1;void Approx:Show()cout<<"用抛物线拟合:"<<endl;cout<<"a="<<a0<<endl;cout<<"b="<<a1<<endl;cout<<"c="<<a2<<endl;cout<<"用指数曲线拟合:"<<endl;cout<<"a="<<b0<<endl;cout<<"b="<<b1<<endl;int main() Approx ap;double x15;for(int i=0;i<15;i+) xi=1+i*0.5;double y15=33.4,79.5,122.65,159.05,189.15,214.15,238.65,252.5,267.55,280.5,296.65,301.4,310.4,318.15,325.15;ap.GetValue(x,y);ap.Para();ap.Expo();ap.Show();return 0;专心-专注-专业

    注意事项

    本文(东南大学计算方法实验报告(共16页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开