新版湘教版初二数学八年级下册-第二章-四边形--全章教案教学设计(共52页).doc
-
资源ID:14498676
资源大小:3.05MB
全文页数:52页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
新版湘教版初二数学八年级下册-第二章-四边形--全章教案教学设计(共52页).doc
精选优质文档-倾情为你奉上多边形教学目标1知识与技能:经历探索多边形的内角和公式的过程;会应用公式解决问题,培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力2. 过程与方法:经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系,探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力3.情感态度与价值观:经历多边形外角和的探索过程,培养学生主动探索的习惯;通过对内角、外交之间的关系,体会知识之间的内在联系;培养学生勇于实践、大胆创新的精神,使学生认识到数学来源于实践,又反过来作用于实践的观点重点难点1、重点:经历探索多边形的内角和与外角和公式的过程2、难点:推导多边形的内角和与外角和公式.灵活运用公式解决简单的实际问题.教学策略自导自主学习教 学 活 动课前、课中反思(一)、复习提问1什么叫三角形? 2三角形的内角和是多少?3什么叫三角形的外角?什么叫外角和?三角形的外角和是多少?(二)、探究发现,认识新知 1多边形的概念, 三角形有三个内角、三条边,我们也可以把三角形称为三边形(但习惯称三角形)。我们知道:在平面内,不在同一直线上的三条线段首尾顺次连结组成的平面图形叫三角形。你能说出什么叫四边形、五边形吗?如图(1)它是由平面内不在同一直线上的4条线段首尾顺次连结组成的图形,记为四边形ABCD。(按顺时针或逆时针方向书写)如图(2)是由平面内不在同一直线上的5条线段首尾顾次连结组成的图形,记为五边形ABCDE。ABCDE图(2)DCBA图(1) 一般地,在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。组成多边形的各条线段叫作多边形的边,每相邻两条边的公共端点叫作多边形的顶点,连结不相邻的两个顶点的线段叫作多边形的对角线,相邻两边组成的角叫作多边形的内角,简称多边形的角。图(3)与三角形类似如图,A、D、C、ABC是四边形ABCD的四个内角,延长 AB、CB得四边形ABCD的两个外角CBE和ABF,这两个外角是对顶角。一个n边形有n个内角,有2n个外角。如果多边形的各边都相等,各内角也都相等,则称为正多边形,如正三角形、正四边形(正方形)、正五边形等等。连结多边形不相邻的两个顶点的线段叫做多边形的对角线,如图1,线段AC是四边形 ABCD的对角线,如图2,线段AD、AC是四边形ABCDE的对角线,如图3中线段AC、AD、AE是六边形ABCDEF的对角线。 问:(1)四边形有几条对角线?(两条AC、BD) (2)五边形有几条对角线? 以A为端点的对角线有两条AC、AD,同样以月为端点的对角线也有2条,以C为端点也有2条,但AC与CA是同一条线段,以D为端点的两条DA、DB与AD、BD都分别表示同一条线段。所以只有5条。 (3)六边形有几条对角线?n边形呢? 六边形有9条对角线。 从以上分析可知从n边形的一个顶点引对角线,可以引(n-3)条, (除本身这个点以及和这点相邻的两点外),那么n个顶点,就有n(n- 3)条,但其中每一条都重复计算一次,如AB与BA,所以n边形一共有条对角线。 大家可以加以验证:当n=3时,没有对角线,当n=4时,有2条;当n=5时,有5条:当n=6时,有9条 2多边形的内角和公式。 三角形是边数最少的多边形,它的内角和等于180°,那么一般n边形是否也有内角和公式呢?让我们先从四边形,正边形,六边形开始。 从上面对角线的研究可知,一条对角线把四边形分成2个三角形,这两个三角形的内角和的和就是四边形的内角和,五边形的内角和就是图中3个三角表内角和的和。让学生填写下表由此,你可以得到多边形的内角和公式吗?边数图形名称对角线条数划分成的三角形个数多边形的内角和3011×180°4122×180°5612nn边形的内角和(n-2)·180°知道一个多边形的内角和,根据公式也可以求边数n。例1一个多边形的内角和等于2340°,求它的边数。 问题:一个正多边形的一个内角为150°,你知道它是几边形?分析:正多边形的每个内角都相等。(三)、巩固练习课本后面练习(四)、小结本节课我们通过把多边形划分成若干个三角形,用三角形内角和去求多边形的内角和,从而得到多边形的内角和公式为(n-2)·180°, 它揭示了多边形内角和与边数之间的关系.。这种化未知为已知的转化方法,必须在学习中逐步掌握. (五)、作业课本后面练习经历探索多边形的内角和公式的过程;会应用公式解决问题,培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力课后反思多边形教学目标1知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题,培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力2. 过程与方法:经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系,探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力3.情感态度与价值观:经历多边形外角和的探索过程,培养学生主动探索的习惯;通过对内角、外交之间的关系,体会知识之间的内在联系;培养学生勇于实践、大胆创新的精神,使学生认识到数学来源于实践,又反过来作用于实践的观点重点难点1、重点:经历探索多边形的内角和与外角和公式的过程2、难点:推导多边形的内角和与外角和公式.灵活运用公式解决简单的实际问题.教学策略自导自主学习教 学 活 动课前、课中反思(一)、复习提问1什么叫三角形? 2三角形的内角和是多少?3什么叫三角形的外角?什么叫外角和?三角形的外角和是多少?(二)、探究发现,认识新知 1多边形的概念, 三角形有三个内角、三条边,我们也可以把三角形称为三边形(但习惯称三角形)。我们知道:在平面内,不在同一直线上的三条线段首尾顺次连结组成的平面图形叫三角形。你能说出什么叫四边形、五边形吗?如图(1)它是由平面内不在同一直线上的4条线段首尾顺次连结组成的图形,记为四边形ABCD。(按顺时针或逆时针方向书写)如图(2)是由平面内不在同一直线上的5条线段首尾顾次连结组成的图形,记为五边形ABCDE。ABCDE图(2)DCBA图(1) A 一般地,在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。组成多边形的各条线段叫作多边形的边,每相邻两条边的公共端点叫作多边形的顶点,连结不相邻的两个顶点的线段叫作多边形的对角线,相邻两边组成的角叫作多边形的内角,简称多边形的角。图(3)与三角形类似如图,A、D、C、ABC是四边形ABCD的四个内角,延长 AB、CB得四边形ABCD的两个外角CBE和ABF,这两个外角是对顶角。一个n边形有n个内角,有2n个外角。2、多边形的外角和。 什么叫多边形的外角和。 与三角形的外角和一样,与多边形的每个内角相邻的外角有两个,这两个角是对顶角,从与每个内角相邻的两个外角中分别取一个相加,得到的和称为多边形的外角和。 多边形的外角和是否也可以用公式表示呢?下面我们也来探讨。 因为n边形的一个内角与它的相邻的外角互为补角,所以可先求出多边形的内角与外角的总和,再减去内角和,就可得到外角和。 n边形的内角与外角的总和为n·180° n边形的内角和为(n-2)·180°那么n边形的外角和为n·180°(n2)·180°= n·180°-n·180°+360°=360° 这就是说多边形的外角和与边数无关,都等于360°。 例2一个正多边形的一个内角比相邻外角大36°,求这个正多边形的边数。 分析:正多边形的各个内角都相等,那么各个外角也都相等,而多边形的外角和是360°,因此只要求出每个外角度数,就可知是几边形了。 点拨;多边形的外角和等于360°,与边数无关,故常把多边形内角的问题转化为外角和来处理。(三)、巩固练习课本后面练习(四)、小结本节课我们通过把多边形划分成若干个三角形,用三角形内角和去求多边形的内角和,从而得到多边形的内角和公式为(n-2)·180°, 它揭示了多边形内角和与边数之间的关系.。这种化未知为已知的转化方法,必须在学习中逐步掌握. (五)、作业课本后面练习经历探索多边形的外角和公式的过程;会应用公式解决问题,培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力课后反思平行四边形的判定教学目标1知识与技能:使学生掌握用平行四边形的定义判定一个四边形是平行四边形;理解并掌握用二组对边分别相等的四边形是平行四边形这个判定方法来判定一个四边形是平行四边形,能运这两种方法来证明一个四边形是平行四边形2. 过程与方法:通过观察、动手自学掌握用平行四边形的定义判定一个四边形是平行四边形并掌握用二组对边分别相等的四边形是平行四边形这个判定方法来判定一个四边形是平行四边形,能运这两种方法来证明一个四边形是平行四边形3.情感态度与价值观:培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力重点难点1、重点:平行四边形的判定定理2、难点:掌握平行四边形的性质和判定的区别及熟练应用教学策略观察、分析、归纳教 学 活 动课前、课中反思(一)复习提问: 1. 什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书) 2. 将以上的性质定理,分别用命题形式叙述出来。(如果那么) 根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立? (二)新课平行四边形的判定:方法一(定义法):两组对边分别平行的四边形的平边形。几何语言表达定义法:ABCD,ADBC,四边形ABCD是平行四边形解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。方法二:两组对边分别相等的四边形是平行四边形。设问:这个命题的前提和结论是什么? 已知:四边形ABCD中,ABCD,ADBC 求证:四边ABCD是平行四边形。 分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。(见图1) 板书证明过程。小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:判定一:AB=CD,AD=BC,四边形ABCD是平行四边形随堂练习:课本练习题第1题。例题讲解: 例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。 求证:分析:由我们学过平行四边形的性质中,对角相等,得若证明四边形EBFD为平行四边形,便可得到,哪么如何证明该四边形为平行边形呢?可通过证明ABECDF得BE=DF;由AD=BC,E、F分别为AD和BC的中点得ED=FB。练习:2. 已知如图7,E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AECG,BFDH。求证:四边形EFGH是平行四边形。(让学生板演) 图7四本课小结:一个四边形二组对边分别平行或者相等的四边形是平行四边形这个判定定理来判定一个四边形是平行四边形。五作业布置:通过观察、动手自学掌握用平行四边形的定义判定一个四边形是平行四边形并掌握用二组对边分别相等的四边形是平行四边形这个判定方法来判定一个四边形是平行四边形,能运这两种方法来证明一个四边形是平行四边形课后反思平行四边形的判定教学目标1知识与技能:掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算2. 过程与方法:通过观察、动手自学掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算3.情感态度与价值观:培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力重点难点1、重点:理解掌握“对角线互相平分的四边形是平行四边形,两组对角分别相等的四边形是平行四边形”这一判定定理。2、难点:判定定理的证明方法及运用教学策略观察、分析、归纳教 学 活 动课前、课中反思一复习导入1用定义法证明一个四边形是平行四边形时,要什么条件?2用所学的判定方法一判定一个四边形的平行四边形的条件是什么?3平行四边形的对角线互相平分的逆命题如何表达?是否是真命题?二、新课讲解:设问:“对角线互相平分的四边形是平行四边形。”这一命题的前提什么?结论又是什么? 活动:用事先准备好的纸条按课本P96探究方法做,让学生判定这个四边形是否是平行四边形。判定方法三:对角线互相平分的四边形是平行四边形。这个方法的前提是什么?结论又是什么?已知:如图:在四边形ABCD中,AC、BD相交于O,OA=OC,OB=OD。求证:四边形ABCD是平行四边形。分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行。(较简单的)板书证过程。小结:由刚才证明可得,只要有对角线互相平分,可判定这个四边形是平行四边形。几何语言表达:OA=OC, OB= OD 四边形ABCD是平行四边形例题讲解:课本例3。分析:由题意可得OB=OD,再由OA=OF,AE=AF,可得OE=OF。可证四边形EBFD是平行四边形。设问:若是两组对角分别相等的四边形,是不是平行四边形?前提是什么?结论是什么? A B已知:在四边形ABCD中,A =C B=D。 D C 求证:四边形ABCD是平行四边形(让学生板书,然后小结)练习:延长三角形ABC的中线BD至E,使DE=BD,连结AE、CE,如图,求证:BAE=BCE。证明方法:由对角线互相平分可证四边形ABCE为平行四边形,可得BAE=BCE。本课小结: 目前,我们研究平行四边形的哪些性质和判定:平行四边形的性质:对边平行;对边相等;对角线互相平分;夹在平行线间的平行线段相等;对角相等;邻角互补;平行四边形的判定:两组对边平行;两组对边相等;两组对角相等;对角线互相平分的四边形;7、作业布置: 通过观察、动手自学掌握用“对角线互相平分的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算;理解“两组对角分别相等的四边形是平行四边形”这一判定定理,会用这些定理进行有关的论证和计算课后反思平行四边形性质教学目标1知识与技能:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质,会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证2. 过程与方法:通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣3.情感态度与价值观:培养学生发现问题、解决问题的能力及逻辑推理能力重点难点1、重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用2、难点:运用平行四边形的性质进行有关的论证和计算.教学策略自导自主学习教 学 活 动课前、课中反思一、课堂引入1我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四形(2)表示:平行四边形用符号“”来表示如图,在四边形ABCD中,ABDC,ADBC,那么四边形ABCD是平行四边形平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”AB/DC ,AD/BC , 四边形ABCD是平行四边形(判定); 四边形ABCD是平行四边形AB/DC, AD/BC(性质)注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角而三角形对边是指一个角的对边,对角是指一条边的对角(教学时要结合图形,让学生认识清楚)2【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致? (1)由定义知道,平行四边形的对边平行根据平行线的性质可知,在平行四边形中,相邻的角互为补角(相邻的角指四边形中有一条公共边的两个角注意和第一章的邻角相区别教学时结合图形使学生分辨清楚)(2)猜想 平行四边形的对边相等、对角相等下面证明这个结论的正确性已知:如图ABCD,求证:ABCD,CBAD,BD,BADBCD分析:作ABCD的对角线AC,它将平行四边形分成ABC和CDA,证明这两个三角形全等即可得到结论(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题) 证明:连接AC, ABCD,ADBC, 13,24又 ACCA, ABCCDA (ASA) ABCD,CBAD,BD又 1423, BADBCD由此得到:平行四边形性质1平行四边形的对边相等平行四边形性质2 平行四边形的对角相等二、例习题分析例1(教材例1) 例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE分析:要证AF=CE,需证ADFCBE,由于四边形ABCD是平行四边形,因此有D=B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF由“边角边”可得出所需要的结论证明略三、随堂练习1填空:(1)在ABCD中,A=,则B= 度,C= 度,D= 度(2)如果ABCD中,AB=240,则A= 度,B= 度,C= 度,D= 度 (3)如果ABCD的周长为28cm,且AB:BC=25,那么AB= cm,BC= cm,CD= cm,CD= cm2如图4.39,在ABCD中,AC为对角线,BEAC,DFAC,E、F为垂足,求证:BEDF四、课后练习1(选择)在下列图形的性质中,平行四边形不一定具有的是( )(A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是2在ABCD中,如果EFAD,GHCD,EF与GH相交与点O,那么图中的平行四边形一共有( )(A)4个 (B)5个 (C)8个 (D)9个3如图,ADBC,AECD,BD平分ABC,求证AB=CE通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣课后反思平行四边形的性质教学目标1知识与技能:理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质,能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题2. 过程与方法:通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分的性质这一节综合性较强,教学中要注意引导学生要注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华3.情感态度与价值观:培养学生的推理论证能力和逻辑思维能力重点难点1、重点:平行四边形对角线互相平分的性质,以及性质的应用2、难点:综合运用平行四边形的性质进行有关的论证和计算教学策略观察、分析、归纳教 学 活 动课前、课中反思一、课堂引入1复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:具有一般四边形的性质(内角和是)角:平行四边形的对角相等,邻角互补 边:平行四边形的对边相等 2【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心; (2)平行四边形的对角线互相平分二、例习题分析例1(补充) 已知:如图421, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F求证:OEOF,AE=CF,BE=DF证明:在 ABCD中,ABCD,1234又 OAOC(平行四边形的对角线互相平分), AOECOF(ASA)OEOF,AE=CF(全等三角形对应边相等) ABCD, AB=CD(平行四边形对边相等)ABAE=CDCF 即 BE=FD【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由例2已知四边形ABCD是平行四边形,AB10cm,AD8cm,ACBC,求BC、CD、AC、OA的长以及ABCD的面积分析:由平行四边形的对边相等,可得BC、CD的长,在RtABC中,由勾股定理可得AC的长再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了)3.平行四边形的面积计算解略(参看教材)三、随堂练习1在平行四边形中,周长等于48,已知一边长12,求各边的长已知AB=2BC,求各边的长已知对角线AC、BD交于点O,AOD与AOB的周长的差是10,求各边的长2如图,ABCD中,AEBD,EAD=60°,AE=2cm,AC+BD=14cm,则OBC的周长是_ _cm3ABCD一内角的平分线与边相交并把这条边分成,的两条线段,则ABCD的周长是_ _四、课后练习1判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD ( )(2)平行四边形两条对角线的交点到一组对边的距离相等 ( )(3)平行四边形的两组对边分别平行且相等 ( )(4)平行四边形是轴对称图形 ( )2在 ABCD中,AC6、BD4,则AB的范围是_ _3在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 4公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB15cm,AD12cm,ACBC,求小路BC,CD,OC的长,并算出绿地的面积通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分的性质这一节综合性较强,教学中要注意引导学生要注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华课后反思中心对称与中心对称图形教学目标1知识与技能:了解中心对称及其基本性质2. 过程与方法:在探索的过程中培养学生有条理地表达及与人交流合作的能力;3.情感态度与价值观:培养学生的观察能力、动手能力自学能力、计算能力、逻辑思维能力重点难点1、重点:成中心对称图形概念及其基本性质。2、难点:中心对称的性质,成中心对称的图形的画法教学策略观察、分析、归纳教 学 活 动课前、课中反思一、课前预习与导学 1已知三点A、B、O如果点A与点A关于点O对称,点B与点B关于点O对称,那么线段AB与AB的关系是_2已知线段AB与点O的位置如图所示,试画出线段AB关于点O的对称线段AB 二、新课(一)情境创设1、几幅中心对称的图片 2、互动探究观察下面两个图形,怎样变换可以使它们重合?把一个图形绕某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点.一个图形绕某一点旋转180°是一种特殊的旋转,因此成中心对称的两个图形具有图形旋转的一切性质.观察上图,回答下列问题:问题一:四边形ABCD与四边形EHFG关于点O成中心对称吗?问题二:在图3-5中,分别连接关于点O的对称点A和E、B和H、C和F、D和G。你发现了什么?【总结】中心对称的性质:成中心对称的两个图形具有旋转对称的一切性质 问题三:中心对称与轴对称有什么区别?又有什么联系?轴对称中心对称有一条对称轴直线有一个对称中心点图形沿对称轴翻折180°后重合图形绕对称中心旋转180°后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分二例题解析ABCDEF【例1】如图,2块同样的三角尺,它们是否关于某点成中心对称?若是,请确定它的对称中心.OBA【例2】如图,已知线段AB和点O,画出线段AB,使它与线段AB关于点O成中心对称.【例3】如图,已知ABC和点O,画出DEF,使它与ABC关于点O成中心对称.OBAC三随堂演练1下列说法错误的是 ( ) A关于中心对称的两个图形中,对应线段相等长度B成中心对称的两个图形的对称点的连线段中点就是对称中心C平行四边形一组对边关于对角线交点对称D如果两点到某点的距离相等,则它们关于这点对称2如图,D是ABC的边AC上一点,画出EFG,使它与ABC点D成中心对称.DACB 四学后反思五课后作业1下列说法中正确的是 ( )A两个能够互相重合的图形一定成中心对称B成中心对称的两个图形一定能够互相重合C把一个图形绕着某一点旋转一定的角度,如果它能够与另一个图形重合,那么这两个图形一定成中心对称D如果两个图形的对应点连线都经过某一点,那么这两个图形关于这一点成中心对称2如图所示的四组图形中,左边图形与右边图形成中心对称的有 ( )A1组 B2组 C3组 D4组3若两个图形成中心对称,则下列说法:对称点的连线必过对称中心;这两个图形的形状和大小完全相同;这两个图形的对应线段一定互相平行;将一个图形围绕对称中心旋转某个角度后必与另一个图形重合,其中正确的有 ( )A1个 B2个 C3个 D 4个 4若四边形ABCD与四边形ABCD关于点O成中心对称,已知A=800,AB=7cm,CO=9cm,则A=_,AB=_,CC=_.5已知三点A、B、O,如果点C与点A关于点O对称,点D与点B 关于点O对称,那么线段AB与CD的关系是_在探索的过程中培养学生有条理地表达及与人交流合作的能力课后反思中心对称与中心对称图形教学目标1知识与技能:了解中心对称及其基本性质2. 过程与方法:通过具体实例认识旋转,知道旋转的性质;3.情感态度与价值观:经历对生活中旋转现象观察、分析过程,引导学生用数学的眼光看待生活中的有关问题重点难点1、重点:旋转图形的性质。2、难点:旋转图形的画法教学策略观察、分析、归纳教 学 活 动课前、课中反思一、课前预习与导学 判断题(对的打“”,错的打“×”): (1)如果一个图形绕某个点旋转,能与另一个图形重合,那么这两个图形组合在一起就是一个中心对称图形; ( ) (2)中心对称图形一定是轴对称图形( )二、新课1欣赏图片: 问题:这些图形有什么共同的特征? 共同回顾轴对称图形,某图形沿某条轴对折能重合,那么有没有什么图形绕着某点旋转也能重合呢?有没有什么图形绕着某点旋转180能够重合呢?3合作探究(1)根究观察总结的特征,试着说明中心对称图形的定义:如果把一个图形绕着某一点旋转180度后能与自身重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。(2)两个图形成中心对称和中心对称图形的区别和联系区别:研究对象的个数不同:中心对称是指2个图形,而中心对称图形只研究一个图形;中心对称图形的对称中心是图形自身或内部一点。而中心对称不一定。联系:两个图形都是关于点对称,它们之间没有绝对的界限。二例题解析【例1】下列哪些是中心对称图形?哪些是轴对称图形,请画出它们的对称中心或对称轴【例2】平行四边形是中心对称图形,现过对称中心任意画一直线将其分成两部分,这两部分面积有何关系?CABD【例3】张老汉有一块田地如图所示,他想田分给两个儿子,儿子提出:分割的面积应相等;最好把分割线做成一条水渠,便于灌溉,你能帮助张老汉画出这条分割线吗?三随堂演练1下列扑克图案中,不是中心对称图形的有_个.2把26个英文大写字母看成图案,其中是中心对称图形的有 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z3下列几组图形中,既是中心对称图形,又是轴对称图形的是 ( )A.正方形、长方形、平行四边形 B.正三角形、正方形、等腰梯形 C.长方形、正方形、圆 D.平行四边形、正方形、等边三角形4如图,有一块长方形田地,田地内有一口井,现将这块土地平分给两家农户,要求两家合用这口井浇地,请问应如何分?在图中画出分界线.四学后反思1中心对称图形的概念2常见的中心对称图形。3中心对称图形的识别方法五课后作业1下列几何图形中:(1)两条互相平分的线段;(2)两个互相交叉的圆;(3)两个