欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    概率论期末复习知识点.docx

    • 资源ID:14516335       资源大小:162.86KB        全文页数:14页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率论期末复习知识点.docx

    精选优质文档-倾情为你奉上知识点第一章 随机事件与概率 本章重点:随机事件的概率计算 1*事件的关系及运算 (1) (或) (2) 和事件: ; (简记为) (3) 积事件: , (简记为或) (4) 互不相容:若事件A和B不能同时发生,即 (5) 对立事件: (6) 差事件:若事件A发生且事件B不发生,记作(或) (7) 德摩根(De Morgan)法则:对任意事件A和B有, . 2 *古典概率的定义古典概型:几何概率· 3*概率的性质 (1) (2) (有限可加性) 设n个事件两两互不相容,则有 (3) (4) 若事件A,B满足,则有, (5) (6) (加法公式) 对于任意两个事件A,B,有.对于任意n个事件,有 . 4*条件概率与乘法公式. 乘法公式: . 5*随机事件的相互独立性事件A与B相互独立的充分必要条件一: ,事件A与B相互独立的充分必要条件二: 对于任意n个事件相互独立性定义如下:对任意一个,任意的,若事件总满足,则称事件相互独立这里实际上包含了个等式 6*贝努里概型与二项概率 设在每次试验中,随机事件发生的概率,则在n次重复独立试验中,事件恰发生次的概率为, 7*全概率公式与贝叶斯公式贝叶斯公式:如果事件两两互不相容,且,则第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布 1*离散型随机变量及其分布律分布律也可用下列表格形式表示: 2*概率函数的性质 (1) , (2) 3*常用离散型随机变量的分布 (1)01分布,它的概率函数为,其中,或1, (2)二项分布,它的概率函数为,其中, ()*泊松分布,它的概率函数为,其中,4*二维离散型随机变量及联合概率 二维离散型随机变量的分布可用下列联合概率函数来表示:其中, 5*二维离散型随机变量的边缘概率 设为二维离散型随机变量,为其联合概率(),称概率为随机变量的边缘分布律,记为并有,称概率为随机变量Y的边缘分布率,记为,并有 =. 6随机变量的相互独立性 设为二维离散型随机变量,与相互独立的充分必要条件为 多维随机变量的相互独立性可类似定义即多维离散型随机变量的独立性有与二维相应的结论7*随机变量函数的分布 设是一个随机变量,是一个已知函数,是随机变量的函数,它也是一个随机变量对离散型随机变量,下面来求这个新的随机变量的分布 设离散型随机变量的概率函数为则随机变量函数的概率函数可由下表求得但要注意,若的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率相加第三章 连续型随机变量及其分布 本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算 1*分布函数 随机变量的分布可以用其分布函数来表示, 2分布函数的性质 (1) (2) ; 由已知随机变量的分布函数,可算得落在任意区间内的概率 3联合分布函数 二维随机变量的联合分布函数 4联合分布函数的性质 (1) ; (2) ,; (3) 5*连续型随机变量及其概率密度 设随机变量的分布函数为,如果存在一个非负函数,使得对于任一实数,有成立,则称X为连续型随机变量,函数称为连续型随机变量的概率密度 6*概率密度及连续型随机变量的性质()(); (); (4)设为连续型随机变量,则对任意一个实数c,; (5)设是连续型随机变量的概率密度,则有 7*常用的连续型随机变量的分布 (1)均匀分布,它的概率密度为其中, (2)指数分布,它的概率密度为其中, (3)正态分布,它的概率密度为 ,其中,当时,称为标准正态分布,它的概率密度为,标准正态分布的分布函数记作,即, 当出时,可查表得到;当时,可由下面性质得到设,则有 ;*二维连续型随机变量及联合概率密度 对于二维随机变量(X,Y)的分布函数,如果存在一个二元非负函数,使得对于任意一对实数有成立,则为二维连续型随机变量,为二维连续型随机变量的联合概率密度 *二维连续型随机变量及联合概率密度的性质 (1) ; (2) ; (3) 在的连续点处有 ; (4) 设为二维连续型随机变量,则对平面上任一区域有 1,*二维连续型随机变量的边缘概率密度 设为二维连续型随机变量的联合概率密度,则的边缘概率密度为;的边缘概率密度为 11常用的二维连续型随机变量 (1)均匀分布 如果在二维平面上某个区域G上服从均匀分布,则它的联合概率密度为 (2) 二维正态分布 如果的联合概率密度则称服从二维正态分布,并记为. 如果,则,即二维正态分布的边缘分布还是正态分布 12*随机变量的相互独立性 , 那么,称随机变量与相互独立 设为二维连续型随机变量,则与相互独立的充分必要条件为 如果那么,与相互独立的充分必要条件是第四章 随机变量的数字特征 本章重点:随机变量的期望。方差的计算 1*数学期望 设是离散型的随机变量,其概率函数为则定义的数学期望为; 设为连续型随机变量,其概率密度为,则定义的数学期望为 2*随机变量函数的数学期望设为离散型随机变量,其概率函数则的函数的数学期望为 设为二维离散型随机变量,其联合概率函数则的函数的数学期望为; 3*数学期望的性质 (1) (其中c为常数); (2) (为常数); (3) ; (4) 如果与相互独立,则. 4*方差与标准差 随机变量的方差定义为计算方差常用下列公式: 当为离散型随机变量,其概率函数为则的方差为; 当为连续型随机变量,其概率密度为,则的方差为.随机变量的标准差定义为方差的算术平方根. 5*方差的性质 (1) (c是常数); (2) (为常数); (3) 如果与独立,则. 6原点矩与中心矩 随机变量的阶原点矩定义为; 随机变量的阶中心矩定义为; 7*常用分布的数字特征 (1) 当服从二项分布时, (2) 当服从泊松分布时, (3) 当服从区间上均匀分布时, (4) 当服从参数为的指数分布时, (5) 当服从正态分布时, (6) 当服从二维正态分布时,;专心-专注-专业

    注意事项

    本文(概率论期末复习知识点.docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开