一次函数的图像100道题与答案(共96页).doc
-
资源ID:14522676
资源大小:3.72MB
全文页数:96页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
一次函数的图像100道题与答案(共96页).doc
精选优质文档-倾情为你奉上绝密启用前2016-2017学年度?学校12月月考卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分一、解答题1某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元为按时完成任务,该企业招收了新工人设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画若李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价成本)2某工厂甲、乙两个车间同时开始生产某种产品,产品总任务量为m件,开始甲、乙两个车间工作效率相同乙车间在生产一段时间后,停止生产,更换新设备,之后工作效率提高甲车间始终按原工作效率生产甲、乙两车间生产的产品总件数y与甲的生产时间x(时)的函数图象如图所示(1)甲车间每小时生产产品 件,a= (2)求乙车间更换新设备之后y与x之间的函数关系式,并求m的值(3)若乙车间在开始更换新设备时,增加两名工作人员,这样可便更换设备时间减少0.5小时,并且更换后工作效率提高到原来的2倍,那么两个车间完成原任务量需几小时?3如图,墙面OC与地面OD垂直,一架梯子AB长5米,开始时梯子紧贴墙面,梯子顶端A沿墙面匀速每分钟向下滑动1米,x分钟后点A滑动到点A,梯子底端B沿地面向左滑动到点B,OB=y米,滑动时梯子长度保持不变(1)当x=1时,y= 米;(2)求y关于x的函数关系式,并写出自变量x的取值范围;(3)研究(2)中函数图象及其性质填写下表,并在所给的坐标系中画出函数图象;如果点P(x,y)在(2)中的函数图象上,求证:点P到点Q(5,0)的距离是定值;(4)梯子底端B沿地面向左滑动的速度是 A匀速 B加速 C减速 D先减速后加速4如图,已知函数y=kx+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点A的坐标为(6,0),点M的横坐标为2,过点P(a,0),作x轴的垂线,分别交函数y=kx+b和y=x的图象于点C、D(1)求函数y=kx+b的表达式;(2)若点M是线段OD的中点,求a的值5甲、乙两城市之间开通了动车组高速列车已知每隔2h有一列速度相同的动车组列车从甲城开往乙城如图,OA是第一列动车组列车离开甲城的路程s(km)与运行时间t(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图象请根据图中的信息,解答下列问题:(1)从图象看,普通快车发车时间比第一列动车组列车发车时间 1h(填”早”或”晚”),点B的纵坐标600的实际意义是 ;(2)请直接在图中画出第二列动车组列车离开甲城的路程s(km)与时间t(h)的函数图象;(3)若普通快车的速度为100km/h,求第二列动车组列车出发多长时间后与普通快车相遇?请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔6甲、乙两车分别从A、B两地沿同一路线同时出发,相向而行,以各自速度匀速行驶,甲车行驶到B地停止,乙车行驶到A地停止,甲车比乙车先到达目的地设甲、乙两车之间的路程为y(km),乙车行驶的时间为x(h),y与x之间的函数图象如图所示(1)求甲车行驶的速度(2)求甲车到达B地后y与x之间的函数关系式(3)当两车相遇后,两车之间的路程是160km时,求乙车行驶的时间7小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站如乙下车,最后步行到学校(在整个过程中小丽步行的速度不变)图中折线ABCDE表示小丽和学校之间的距离y(米)与她离家时间x(分钟)之间的函数关系(1)小丽步行的速度为 ;(2)写出y与x之间的函数关系式: 8某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)152030y(件)252010若日销售量y是销售价x的一次函数(1)求出日销售量y(件)是销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日的销售利润是多少元?9如图,已知一次函数的图象与反比例函数的图象的两个交点是A(2,4),C(4,n),与y轴交于点B,与x轴交于点D(1)求反比例函数和一次函数的解析式;(2)连结OA,OC,求AOC的面积10如图,在直角坐标系中,点A的坐标为(1,0),以OA为一边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1,且OD2),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.(1)、试找出图1中的一个损矩形 ;(2)、试说明(1)中找出的损矩形一定有外接圆;(3)、随着点D的位置变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由.(4)、在图中,过点M作MGy轴,垂足是点G,连结DN,若四边形DMGN为损矩形,求点D的坐标. 11如图,在平面直角坐标系中,点A,B分别在x轴正半轴与y轴正半轴上,线段OA,OB(OAOB)的长是方程x(x4)+8(4x)=0的两个根,作线段AB的垂直平分线交y轴于点D,交AB于点C(1)求线段AB的长;(2)求tanDAO的值;(3)若把ADC绕点A顺时针旋转°(090),点D,C的对应点分别为D1,C1,得到AD1C1,当AC1y轴时,分别求出点C1,点D1的坐标12如图,直线l:y=x+m与x轴交于A点,且经过点B(,2)已知抛物线C:y=ax2+bx+9与x轴只有一个公共点,恰为A点(1)求m的值及BAO的度数;(2)求抛物线C的函数表达式;(3)将抛物线C沿x轴左右平移,记平移后的抛物线为C1,其顶点为P平移后,将PAB沿直线AB翻折得到DAB,点D能否落在抛物线C1上?如能,求出此时顶点P的坐标;如不能,说明理由13随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A7250.01Bmn0.01设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n= (2)写出yA与x之间的函数关系式(3)选择哪种方式上网学习合算,为什么?14已知一次函数(1)为何值时,随的增大而减小?(2)为何值时,它的图象经过原点?15小明和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1. 5倍设两人出发x min后距出发点的距离为y m图中折线段OBA表示小明在整个训练中y与x的函数关系,其中点A在x轴上,点B坐标为(2,480)(1)点B所表示的实际意义是 ; (2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小明上坡平均速度的一半,那么两人出发后多长时间第一次相遇? 16(1)化简: (2)求直线y=2x3与直线y=的交点坐标17已知点A(m,n)在y=的图象上,且m(n1)0(1)求m的取值范围;(2)当m,n为正整数时,写出所有满足题意的A点坐标,并从中随机抽取一个点,求:在直线y=x+6下方的概率18某商店决定购进一批某种衣服若商店以每件60元卖出,盈利率为20%()(1)试求这种衣服的进价;(2)商店决定试销售这种衣服时,每件售价不低于进价,又不高于每件70元,求试销中销售量(件)与销售单价(元)的关系是一次函数(如图)问当销售单价定为多少元时,商店销售这种衣服的利润最大.19如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=x+b与y轴交于点P,与边OA交于点D,与边BC交于点E(1)若直线y=x+b平分矩形OABC的面积,求b的值;(2)在(1)的条件下,当直线y=x+b绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在ON平分CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;(3)在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上20如图,请根据图象所提供的信息解答下列问题:(1)当x 时,kx+bmx-n;(2)不等式kx+b0的解集是 ;(3)交点P的坐标(1,1)是一元二次方程组: 的解;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积21某商场进了一批台灯,进价为30元,每个以40元卖出时,平均每月能销售600个。调查表明,在一定的售价范围内,售价x和销售量y满足如图的函数关系。(1)求出销售量y和售价x的函数关系式,并写出自变量的范围;(2)若平均每月想获得利10000元,则售价应定为多少元?(3)设每个月的销售利润为w,则将灯的售价定为多少元时,每个月可以获得最大的销售利润?是多少元?22一次函数y=(k)x3k+10(k为偶数)的图象经过第一、二、三象限,与x轴、y轴分别交于A、B两点,过点B作一直线与坐标轴围成的三角形面积为2,交x轴于点C.(1)求该一次函数的解析式;(2)若一开口向上的抛物线经过点A、B、C三点,求此抛物线的解析式。(3)过(2)中的A、B、C三点作ABC,求tanABC的值.23 一名考生步行前往考场, 10分钟走了总路程的,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图A所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )A 20分钟 22分钟 24分钟 D26分钟24A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(3)当两车相距100千米时,求甲车行驶的时间.x/小时y/千米600146OFECD25如图,在平面直角坐标系中,点A的坐标为(3,0),直线l与x轴正半轴夹角为30°,点B为直线l上的一个动点,延长AB至点C,使得AB=BC,过点C作CDx轴于点D,交直线l于点F,过点A作AEl交直线CD于点E(1)、若点B的横坐标为6,则点C的坐标为(_,_),DE的长为 ;(2)、若点B的横坐标大于3,则线段CF的长度是否发生改变?若不变,请求出线段CF的长度;若改变,请说明理由;(3)、连结BE,在点B的运动过程中,以OB为直径的P与ABE某一边所在的直线相切,请求出所有满足条件的DE的长26如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作,垂足为H,连接NP设点P的运动时间为t秒 若NPH的面积为1,求t的值; 点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由27如图,在平面直角坐标系中,直线y=0.5x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD,过点D作DEx轴,垂足为E.(1)求点A、B的坐标,并求边AB的长;(2)求点D的坐标;(3)你能否在x轴上找一点M,使MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.28如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,2)(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且SBOC=2,求点C的坐标29有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FGx轴,则此段时间,甲机器人的速度为 米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米30如图,已知直线y1=x+1与x轴交于点A,与直线y2=x交于点B(1)求AOB的面积;(2)求y1y2时x的取值范围31我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为1520的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y()随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线的一部分,请根据图中信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大棚里温度在15及15以上的时间有多少小时?32甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值33小明家国庆期间租车到某地旅游,先匀速行驶50千米的普通公路,这时油箱内余油32升,由于国庆期间高速免费,进而上高速公路匀速行驶到达旅游目的地如图是汽车油箱内余油量Q(升)与行驶路程s(千米)之间的函数图象,当行驶150千米时油箱内余油26升(1)分别求出AB段和BC段图象所在直线的函数解析式(2)到达旅游目的地后,司机说:“今日改走高速公路后比往日全走普通公路省油6升”,求此时油箱余油多少升?34如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=4,另两边与一次函数y=2x+b的图象分别相交于点E,F,且DE=2,过点E作EHx轴于点H,过点F作FGEH于点G(1)求一次函数的解析式;(2)当四边形BHGF为正方形时,点F的坐标;(3)是否存在矩形BHGF与矩形DOHE相似情形?若存在,求出相似比;若不存在,并说明理由35如图,已知A(4,n),B(2,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及AOB的面积;(3)求方程kx+b=0的解(请直接写出答案);(4)求不等式kx+b0的解集(请直接写出答案)36如图,已知函数yxb的图象与x轴、y轴分别交于点A,B,与函数yx的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a2),过点P作x轴的垂线,分别交函数yxb和yx的图象于点C,D.(1)求点A的坐标;(2)若OBCD,求a的值37如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(2,m)和点B(4,2),与x轴交于点C(1)求一次函数与反比例函数的解析式;(2)求AOB的面积38一次函数y=2x+2与反比例函数y=(k0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点(1)求点B的坐标及反比例函数的表达式;(2)C(0,2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由39如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标40一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?41如图,已知直线y=kx3经过点M,求此直线与x轴,y轴的交点坐标42如图,在直角坐标系中,A(0,4),C(3,0)(1)画出线段AC关于y轴对称线段AB;将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得ADx轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值43如图,在平面直角坐标系中,点O为坐标原点,在四边形OABC中,点A在y轴上,ABOC,点B的坐标为(6,6),点C的坐标为(9,0).(1)求直线BC的解析式;(2)现有一动点P从点A出发,以每秒1个单位的速度沿射线AB运动(点P不与点B重合),过P作PHx轴,垂足为H,直线HP交直线BC于点Q,设PQ的长度为d,点P的运动时间为t秒,求d与t之间的函数关系式,并直接写出相应的自变量t的取值范围;(3)在(2)问的条件下,在y轴和直线BC上分别找一点M和N,当四边形PQMN为菱形时,求点M的坐标. 44如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求AOB的面积45已知函数y1=ax2+bx,y2=ax+b(ab0)在同一平面直角坐标系中(1)若函数y1的图象过点(1,0),函数y2的图象过点(1,2),求a,b的值(2)若函数y2的图象经过y1的顶点求证:2a+b=0;当1x时,比较y1,y2的大小46如图,已知函数y=x+3的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M(1)分别求出点A、点M的坐标;(2)在x轴上有一动点P(a,0)(其中a2),过点P作x轴的垂线,分别交函数y=x+3和y=x的图象于点C、D,且OB=2CD,求a的值47如图:直线y=kx+b与坐标轴交于两点,A(4,0)、B(0,3),点C为AB中点(1)求直线y=kx+b的解析式;(2)求AOC的面积48直线l1:y1=x1+2和直线l2:y2=x2+4相交于点A,分别于x轴相交于点B和点C,分别与y轴相交于点D和点E(1)在平面直角坐标系中,画出直线的大致位置,并求ABC的面积(2)求四边形ADOC的面积49如图,直线l1:y1=x和直线l2:y2=2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线OAB运动(1)求点A的坐标,并回答当x取何值时y1y2?(2)求AOB的面积;(3)当POB的面积是AOB的面积的一半时,求出这时点P的坐标50直线l与直线y=2x+1的交点的横坐标为2,与直线y=x+2的交点的纵坐标为1,求直线l对应的函数解析式51已知:y与x+2成正比例,且x=1时,y=6(1)求y与x之间的函数关系式;(2)若点M(m,4)在这个函数的图象上,求点M的坐标52如图,直线y=2x+2交y轴于A点,交x轴于C点,以O,A,C为顶点作矩形OABC,将矩形OABC绕O点顺时针旋转90°,得到矩形ODEF,直线AC交直线DF于G点(1)求直线DF的解析式;(2)求证:GO平分CGD;(3)在角平分线GO上找一点M,使以点G、M、D为顶点的三角形是等腰直角三角形,求出M点坐标53如图,已知函数y=x+b的图象与x轴、y轴分别交于点A、B,与函数y=2x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a2),过点P作x轴的垂线,分别交函数y=x+b和y=2x的图象于点C,D(1)求点A的坐标;(2)若OB=CD,求a的值54已知直线y1=2x+2及直线y2=x+5,(1)直线y2=x+5与y轴的交点坐标为 (2)在所给的平面直角坐标系(如图)中画出这两条直线的图象;(3)求这两条直线以及x轴所围成的三角形面积55小聪、小明两兄弟一起从家里出发到泉港区图书馆查阅资料,已知他们家到区图书馆的路程是5千米小聪骑自行车,小明步行,当小聪从原路回到家时,小明刚好到达区图书馆图中折线OABC和线段OD分别表示两人离家的路程S(千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)填空:小聪在泉港区图书馆查阅资料的时间为 分钟;(2)试求出小明离开家的路程S (千米)与所经过的时间t(分钟)之间的函数关系式;(3)探究:当小聪与小明迎面相遇时,他们离家的路程是多少千米?56如图,在平面直角坐标系中,已知一次函数y=2x+6的图象与x轴交于点A,与y轴交于点B试求出OAB的面积57如图所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=8,BN=6,求MN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角OBF和等腰直角ABE,连EF交y轴于P点,如图问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由58某产品每件成本28元,在试销阶段产品的日销售量y(件)与每件产品的日销售价x(元)之间的关系如图中的折线所示为维持市场物价平衡,最高售价不得高出83元(1)求y与x之间的函数关系式;(2)要使每日的销售利润w最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?59过点A(1,2)的直线与双曲线在第一象限内交于点P,直线AO交双曲线的另一分支于点B,且点C(2,1)(1)如图,当点P与C重合时,PA、PB分别交y轴于点E、F求证:CE=CF;(2)当点P异于A、C时,探究PAC与PBC的数量关系,请直接写出结论不必证明60如图,直线y=x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当BEC面积最大时,请求出点E的坐标和BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由61如图在平面直角坐标系xOy中,函数y=(x0)的图象与一次函数y=kx-k的图象的交点为A(m,2)(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足PAB的面积是4,直接写出P点的坐标62已知:y+2与3x成正比例,且当x=1时,y的值为4(1)求y与x之间的函数关系式;(2)若点(1,a)、点(2,b)是该函数图象上的两点,试比较a、b的大小,并说明理由63如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(2,1)与x轴的交点为C(1)求一次函数的解析式;(2)求AOC的面积64甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车匀速行驶(汽车速度大于摩托车的速度);甲先到达B地停留半个小时后返回A地,如图是他们之间的距离y(千米)与甲出发时间x(小时)之间的函数图象,其中D表示甲返回到A地(1)求甲乘汽车从A地前往B地和从B地返回A地的速度;(2)求线段CD所表示的y(千米)与x(小时)之间的函数关系式;(3)求甲车出发多长时间辆车相距50千米65在平面直角坐标系中,一次函数y=ax+b(a0)的图形与反比例函数y=(k0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AHy轴,垂足为H,OH=3,tanAOH=,点B的坐标为(m,-2)(1)求AHO的周长;(2)求该反比例函数和一次函数的解析式66 如图,在平面直角坐标系中, A,B,C为坐标轴上的三点,且OA=OB=OC=4,过点A的直线AD交BC于点D,交y轴于点G,ABD的面积为8过点C作CEAD,交AB交于F,垂足为E来源:学.科.网Z.X.X.K(1)求D点的坐标;(2)求证:OF=OG;(3)在第一象限内是否存在点P,使得CFP为等腰直角三角形?若存在,请求出点P的坐标,若不存在,请说明理由。67如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式.(2)点C为线段OB上一动点(点C不与点O,B重合),CDy轴交直线l2于点D,CEl2交y轴于点E.若点C的横坐标为m,求四边形AECD的面积S与m的函数关系式;当S最大时,求出点C的坐标.68如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3请判断点P3是否在直线l上,并说明理由69已知一次函数y=(k2)x3k2+12(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=2x+9的交点在y轴上;(3)k为何值时,图象平行于y=2x的图象;(4)k为何值时,y随x增大而减小70如图,一次函数y=x+1的图象与x轴、y轴交于点A、B两点,(1)求A、B点的坐标;(2)求ABO的面积71如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x3(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由)72对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0)(1)分别写出点A经1次,2次斜平移后得到的点的坐标(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C若A、B、C三点不在同一条直线上,判断ABC是否是直角三角形?请说明理由若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值73根据卫生防疫部门要求,游泳池必须定期换水,清洗某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2t3.5时,求Q关于t的函数表达式74小明每天上午9时骑自行车离开家,15时回家,他描绘了离家的距与时间的变化情况(1)图象表示哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方时什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他由离家最远的地方返回的平均速度是多少75如图,四边形OABC为直角梯形,已知ABOC,BCOC,A点坐标为(3,4),AB=6(1)求出直线OA的函数解析式;(2)求出梯形OABC的周长;(3)若直线l经过点D(3,0),且直线l将直角梯形OABC的面积分成相等的两部分,试求出直线l的函数解析式(4)若直线l经过点D(3,0),且直线l将直角梯形OABC的周长分为5:7两部分,试求出直线l的函数解析式76如图,在平面直角坐标系中,直线y=x+4分别交x轴、y轴于点B、点C,直线CD交x轴于点A,点D的坐标为(,2),点P在线段AB上以每秒1个单位的速度从点A运动到点B,点Q在线段AB上以每秒2个单位的速度从点B运动到点A,P、Q两点同时出发,设点P的运动时间为t(秒),DPQ的面积为S(S0)(1)BQ的长为 (用含t的代数式表示);(2)求点A的坐标;(3)求S与t之间的函数关系式77如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上(1)求线段AB所在直线的函数解析式;(2)将线段AB绕点B逆时针旋转90°,得到线段BC,指定位置画出线段BC若直线BC的函数解析式为y=kx+b,则y随x的增大而 (填“增大”或“减小”)78如图,直线y=x+与两坐标轴分别交于A、B两点(1)求ABO的度数;(2)过A的直线l交x轴半轴于C,AB=AC,求直线l的函数解析式79为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用80已知水银体温计的读数y()与水银柱的长度x(cm)之间是一次函数关系现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度水银柱的长度x(cm)4.28.29.8体温计的读数y()35.040.042.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数81如图,已知直线y=2x+4与直线y=2x2相交于点C(1)求两直线与y轴交点A、B的坐标;(2)求ABC的面积82如图,函数y=ax和y=bx+c的图象相交于点A(1,2),则不等式axbx+c的解集为 83如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作RtABC,且使ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB的面积,并求当APB与ABC面积相等时m的值;(2)如果QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x对称?若存在,求出的值;若不存在,请说明理由84如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(8,0),点A的坐标为(0,3)(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,OPA的面积为,并说明理由85已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象86如图,A(0,1),M(3,2),N(4,4)动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=x+b也随之移动,设移动时间为t秒(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上87如