七年级数学一元一次方程应用题复习题及答案(共4页).doc
-
资源ID:14526146
资源大小:59KB
全文页数:4页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
七年级数学一元一次方程应用题复习题及答案(共4页).doc
精选优质文档-倾情为你奉上1列一元一次方程解应用题的一般步骤 (1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案2.和差倍分问题增长量原有量×增长率 现在量原有量增长量3.等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变 圆柱体的体积公式 V=底面积×高S·hr2h 长方体的体积 V长×宽×高abc4数字问题 一般可设个位数字为a,十位数字为b,百位数字为c 十位数可表示为10b+a, 百位数可表示为100c+10b+a 然后抓住数字间或新数、原数之间的关系找等量关系列方程5市场经济问题 (1)商品利润商品售价商品成本价 (2)商品利润率×100% (3)商品销售额商品销售价×商品销售量 (4)商品的销售利润(销售价成本价)×销售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售6行程问题:路程速度×时间 时间路程÷速度 速度路程÷时间 (1)相遇问题: 快行距慢行距原距 (2)追及问题: 快行距慢行距原距 (3)航行问题:顺水(风)速度静水(风)速度水流(风)速度 逆水(风)速度静水(风)速度水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系7工程问题:工作量工作效率×工作时间 完成某项任务的各工作量的和总工作量18储蓄问题 利润×100% 利息本金×利率×期数1将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,3.14)4有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长5有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元若此车间一共获利1440元,求这一天有几个工人加工甲种零件7某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费 (1)某户八月份用电84千瓦时,共交电费30.72元,求a(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?8某家电商场计划用9万元从生产厂家购进50台电视机已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元 (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案 (2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?1解:设甲、乙一起做还需x小时才能完成工作 根据题意,得×+(+)x=1 解这个方程,得x= =2小时12分 答:甲、乙一起做还需2小时12分才能完成工作2解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x 由题意,得2×(9+x)=15+x 18+2x=15+x,2x-x=15-18 x=-3 答:3年前兄的年龄是弟的年龄的2倍 (点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)3解:设圆柱形水桶的高为x毫米,依题意,得·()2x=300×300×80 x229.3 答:圆柱形水桶的高约为229.3毫米4解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为分 过完第二铁桥所需的时间为分 依题意,可列出方程 += 解方程x+50=2x-50 得x=100 2x-50=2×100-50=150 答:第一铁桥长100米,第二铁桥长150米5解:设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克 根据题意,得2x+3x+5x=50 解这个方程,得x=5 于是2x=10,3x=15,5x=25 答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克6解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个 根据题意,得16×5x+24×4(16-x)=1440 解得x=6 答:这一天有6名工人加工甲种零件7解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60 (2)设九月份共用电x千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90 所以0.36×90=32.40(元) 答:九月份共用电90千瓦时,应交电费32.40元8解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台 (1)当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25 50-x=25当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15 当购B,C两种电视机时,C种电视机为(50-y)台 可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意 由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台 (2)若选择(1)中的方案,可获利 150×25+250×15=8750(元) 若选择(1)中的方案,可获利 150×35+250×15=9000(元) 9000>8750 故为了获利最多,选择第二种方案专心-专注-专业