欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    专题二次函数应用题(共11页).doc

    • 资源ID:14557081       资源大小:178KB        全文页数:11页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    专题二次函数应用题(共11页).doc

    精选优质文档-倾情为你奉上专题二次函数应用题一、引言 数学源于实际,数学的发展主要依赖于生产实践。从数学应用的角度来处理数学、阐释数学、呈现数学,可以提高理论知识的可利用水平,增强理论知识可辨别性程度。数学概念多是由实际问题抽象而来的,大多数都有实际背景。尽管应用的广泛性是数学的一大特征,但常常被数学教材的严谨性和抽象性所掩盖,导致学生应用数学的意识薄弱,应用能力不强。数学的“语言”供世界各民族所共有,是迄今为止惟一的世界通用的语言,是一种科学的语言。科学数学化,社会数学化的过程,乃是数学语言的运用过程;科学成果也是用数学语言表述的,正如伽利略所说“自然界的伟大的书是用数学语言写成的”。从而端正并加深对数学的认识,激发我们应用数学的自觉性、主动性。 二、例题 例1、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?简解:(1)由于抛物线的顶点是 (0,3.5),故可设其解析式为y=ax2+3.5。又由于抛物线过(1.5,3.05),于是求得a=-0.2。抛物线的解析式为y=-0.2x2+3.5。(2)当x=-2.5时,y=2.25。球出手时,他距地面高度是2.25-1.8-0.25=0.20(米)。 评析:运用投球时球的运动轨迹、弹道轨迹、跳水时人体的运动轨迹,抛物线形桥孔等设计的二次函数应用问题屡见不鲜。解这类问题一般分为以下四个步骤:(1)建立适当的直角坐标系(若题目中给出,不用重建);(2)根据给定的条件,找出抛物线上已知的点,并写出坐标;(3)利用已知点的坐标,求出抛物线的解析式。当已知三个点的坐标时,可用一般式y=ax2+bx+c求其解析式;当已知顶点坐标为(k,h)和另外一点的坐标时,可用顶点式y=a(x-k)2+h求其解析式;当已知抛物线与x轴的两个交点坐标分别为(x1,0)、(x2,0)时,可用双根式y=a(x-x1)(x-x2)求其解析式;(4)利用抛物线解析式求出与问题相关的点的坐标,从而使问题获解。 例2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数 (1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少? 解:(1)依题意设y=kx+b,则有 所以y=-30x+960(16x32) (2)每月获得利润P=(-30x+960)(x-16) =30(-x+32)(x-16) =30(+48x-512) =-30+1920 所以当x=24时,P有最大值,最大值为1920 答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元 注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一元二次函数求最值 例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5) (1)求这个二次函数的解析式; (2)该男同学把铅球推出去多远?(精确到0.01米, ) 解:(1) 设二次函数的解析式为 ,顶点坐标为 (6,5) A(0,2)在抛物线上 (2) 当时, (不合题意,舍去) (米) 答:该同学把铅球抛出13.75米. 例4、某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件),与每件的销售价 (元/件)可看成是一次函数关系: 1.写出商场卖这种服装每天的销售利润 与每件的销售价 之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 分析:商场的利润是由每件商品的利润乘每天的销售的数量所决定。 在这个问题中,每件服装的利润为( ),而销售的件数是( +204),那么就能得到一个 与之间的函数关系,这个函数是二次函数. 要求销售的最大利润,就是要求这个二次函数的最大值. 解:(1)由题意,销售利润 与每件的销售价之间的函数关系为 =( 42)(3204),即 =3 2+ 8568 (2)配方,得 =3(55)2+507 当每件的销售价为55元时,可取得最大利润,每天最大销售利润为507元. 例5、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误. (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误? 并通过计算说明理由 分析:(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,10),最高点的纵点标为. (2)求出抛物线的解析式后,要判断此次跳水会不会失误,就是要看当该运动员在距池边水平距离为米. 时,该运动员是不是距水面高度为5米. 解:(1)在给定的直角坐标系下,设最高点为A,入水点为B,抛物线的解析式为 . 由题意,知O(0,0),B(2,10),且顶点A的纵坐标为. 解得 或 抛物线对称轴在轴右侧, 又抛物线开口向下,a0,b0 抛物线的解析式为 (2)当运动员在空中距池边的水平距离为米时, 即 时, 此时运动员距水面的高为 因此,此次跳水会失误. 例6、某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时每套600元,每月可买出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有如下关系: 转让数量(套) 120011001000900800700600500400300200100 价格(元/套) 240250 260 270 280290 300310 320330 340350 方案1:不转让A品牌服装,也不经销B品牌服装; 方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装; 方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。 问:经销商甲选择方案1与方案2一年内分别获得利润各多少元? 经销商甲选择哪种方案可以使自己一年内获得最大利润?若选用方案3,请问他转让给经销商乙的A品牌服装的数量是多少(精确到百套)?此时他在一年内共得利润多少元? 解:经销商甲的进货成本是=(元) 若选方案1,则获利-=(元) 若选方案2,得转让款1200 240=元,可进购B品牌服装 套,一年内刚好卖空可获利-=(元)。 设转让A品牌服装x套,则转让价格是每套 元,可进购B品牌服装 套,全部售出B品牌服装后得款 元,此时还剩A品牌服装(1200-x)套,全部售出A品牌服装后得款600(1200-x)元,共获利,故当x=600套时,可的最大利润元。 在上一问题中,我们结合身边的生活发现案例,建立数学模型,运用二次函数求最值的思想解之。得到了理论上的最优解。这正说明了数学正广泛地运用于经济生活。 三、练习题: 1、某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量(件)与每件的销售价 (元)满足一次函数: (1)写出商场卖这种商品每天的销售利润 与每件的销售价间的函数数关系式. (2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少? 2、如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形的边 米,面积为 平方米. (1)求: 与 之间的函数关系式,并求当米2时, 的值; (2)设矩形的边 米,如果满足关系式 即矩形成黄金矩形,求此黄金矩形的长和宽. 练习1答案: 当定价为42元时,最大销售利润为432元. 练习2答案:(1) 当 时, (2)当 则 又 由、解得 , 其中20不合题意,舍去, 当矩形成黄金矩形时,宽为 ,长为. 3、某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图所示,如图建立直角坐标系,水流喷出的高度 与水平距离之间的关系式是 . 请回答下列问题: 1.柱子OA的高度为多少米? 2.喷出的水流距水平面的最大高度是多少米? 3.若不计其它因素,水池的半径至少要多少米,才能喷出的水流不至于落在池外? 练习3答案: (1)OA高度为米. (2)当时, ,即水流距水平面的最大高为 米. (3) 其中 不合题意, 答:水池的半径至少要2.5米,才能使喷出的水流不至于落在池外. 专心-专注-专业

    注意事项

    本文(专题二次函数应用题(共11页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开