欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    圆锥曲线大题练习(共13页).doc

    • 资源ID:14698321       资源大小:983.50KB        全文页数:13页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    圆锥曲线大题练习(共13页).doc

    精选优质文档-倾情为你奉上1.已知动直线与椭圆C: 交于P、Q两不同点,且OPQ的面积=,其中O为坐标原点.()证明和均为定值;()设线段PQ的中点为M,求的最大值;()椭圆C上是否存在点D,E,G,使得?若存在,判断DEG的形状;若不存在,请说明理由.2.如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线lMN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.(I)设,求与的比值;(II)当e变化时,是否存在直线l,使得BOAN,并说明理由3.设,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。 4.在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足MB/OA, MAAB = MBBA,M点的轨迹为曲线C。()求C的方程;()P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。5.在平面直角坐标系中,点为动点,分别为椭圆的左右焦点已知为等腰三角形()求椭圆的离心率;()设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程6.已知抛物线:,圆:的圆心为点M()求点M到抛物线的准线的距离;()已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程7.如图7,椭圆的离心率为,轴被曲线截得的线段长等于的长半轴长.求,的方程;设与轴的交点为,过坐标原点的直线与相交于点,直线,分别与相交于点,.()证明: ;()记,的面积分别为,问:是否存在直线,使得?请说明理由.1.已知动直线与椭圆C: 交于P、Q两不同点,且OPQ的面积=,其中O为坐标原点.()证明和均为定值;()设线段PQ的中点为M,求的最大值;()椭圆C上是否存在点D,E,G,使得?若存在,判断DEG的形状;若不存在,请说明理由.【解析】(I)解:(1)当直线的斜率不存在时,P,Q两点关于x轴对称,所以因为在椭圆上,因此又因为所以;由、得此时 (2)当直线的斜率存在时,设直线的方程为由题意知m,将其代入,得,其中即(*)又所以因为点O到直线的距离为所以,又整理得且符合(*)式,此时综上所述,结论成立。 (II)解法一: (1)当直线的斜率存在时,由(I)知因此 (2)当直线的斜率存在时,由(I)知所以 所以,当且仅当时,等号成立.综合(1)(2)得|OM|·|PQ|的最大值为解法二:因为 所以即当且仅当时等号成立。因此 |OM|·|PQ|的最大值为 (III)椭圆C上不存在三点D,E,G,使得证明:假设存在,由(I)得因此D,E,G只能在这四点中选取三个不同点,而这三点的两两连线中必有一条过原点,与矛盾,所以椭圆C上不存在满足条件的三点D,E,G.2.如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线lMN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.(I)设,求与的比值;(II)当e变化时,是否存在直线l,使得BOAN,并说明理由解:(I)因为C1,C2的离心率相同,故依题意可设设直线,分别与C1,C2的方程联立,求得 4分当表示A,B的纵坐标,可知 6分 (II)t=0时的l不符合题意.时,BO/AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即解得因为所以当时,不存在直线l,使得BO/AN;当时,存在直线l使得BO/AN.3.设,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。 【命题意图】:本题考查直线和抛物线的方程,平面向量的概念,性质与运算,动点轨迹方程等基本知识,考查灵活运用知识探究问题和解决问题的能力,全面考核综合数学素养。【解析】:由知Q,M,P三点在同一条垂直于x轴的直线上,故可设,则,即 再设,由,即,解得 将代入式,消去得 又点B在抛物线上,所以,再将式代入得 ,即,即,因为,等式两边同时约去得 这就是所求的点的轨迹方程。【解题指导】:向量与解析几何相结合时,关键是找到表示向量的各点坐标,然后利用相关点代入法或根与系数关系解决问题,此外解析几何中的代数式计算量都是很大的,计算时应细致加耐心。4.在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足MB/OA, MAAB = MBBA,M点的轨迹为曲线C。()求C的方程;()P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。解析; ()设M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由题意可知(+) =0, 即(-x,-4-2y) (x,-2)=0.所以曲线C的方程式为y=x-2.()设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x因此直线的方程为,即。则o点到的距离.又,所以当=0时取等号,所以o点到距离的最小值为2.点评:此题考查曲线方程的求法、直线方程、点到直线的距离、用不等式求最值以及导数的应用等。要把握每一个环节的关键。5.在平面直角坐标系中,点为动点,分别为椭圆的左右焦点已知为等腰三角形()求椭圆的离心率;()设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程解:本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分. (I)解:设 由题意,可得即整理得(舍),或所以()解:由()知,可得椭圆方程为.直线方程为,A,B两点的坐标满足方程组,消去y并整理,得,解得,得方程组的解,不妨设,设点的坐标为,则,.由得,于是,由,即,化简得,将代入,得,所以,因此,点的轨迹方程是.6.已知抛物线:,圆:的圆心为点M()求点M到抛物线的准线的距离;()已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程【解析】()由得准线方程为,由得M,点M到抛物线的准线的距离为()设点 , 由题意得设过点的圆的切线方程为即 则即设,的斜率为()则是上述方程的两个不相等的根,将代入得由于是方程的根故,所以,由得解得点的坐标为直线的方程为.7.是双曲线E:上一点,M,N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求的值解:(1)已知双曲线E:,在双曲线上,M,N分别为双曲线E的左右顶点,所以,直线PM,PN斜率之积为而,比较得(2)设过右焦点且斜率为1的直线L:,交双曲线E于A,B两点,则不妨设,又,点C在双曲线E上:*(1)又 联立直线L和双曲线E方程消去y得:由韦达定理得:,代入(1)式得:8.如图7,椭圆的离心率为,轴被曲线截得的线段长等于的长半轴长.求,的方程;设与轴的交点为,过坐标原点的直线与相交于点,直线,分别与相交于点,.()证明: ;()记,的面积分别为,问:是否存在直线,使得?请说明理由.解:由题意知,从而,又,解得,故,的方程分别为,()由题意知,直线的斜率存在,设为,则直线的方程为由得设,则是上述方程的两个实根,于是又点,所以故即(ii)设直线的斜率为,则直线的方程为,由解得或,则点的坐标为又直线的斜率为 ,同理可得点B的坐标为.于是由得,解得或,则点的坐标为;又直线的斜率为,同理可得点的坐标于是因此由题意知,解得或又由点的坐标可知,所以故满足条件的直线存在,且有两条,其方程分别为和评析:本大题主要考查抛物线、椭圆的标准方程的求法以及直线与抛物线、椭圆的位置关系,突出解析几何的基本思想和方法的考查:如数形结合思想、坐标化方法等.专心-专注-专业

    注意事项

    本文(圆锥曲线大题练习(共13页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开