欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数列知识点及常用解题方法归纳总结(共32页).doc

    • 资源ID:14945206       资源大小:1.40MB        全文页数:32页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数列知识点及常用解题方法归纳总结(共32页).doc

    精选优质文档-倾情为你奉上数列知识点及常用解题方法归纳总结一、 等差数列的定义与性质 0的二次函数) 项,即: 二、等比数列的定义与性质 三、求数列通项公式的常用方法 1、公式法2、;3、求差(商)法 解: , ,练习 4、叠乘法 解: 5、等差型递推公式 练习 6、等比型递推公式 练习 7、倒数法 , , ,三、 求数列前n项和的常用方法1、公式法:等差、等比前n项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 解: 练习 3、错位相减法: 4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。 练习 例1设an是等差数列,若a2=3,a=13,则数列an前8项的和为( )A128 B80 C64 D56 (福建卷第3题) 略解: a2 +a= a+a=16,an前8项的和为64,故应选C例2 已知等比数列满足,则( )A64B81C128D243 (全国卷第7题)答案:A例3 已知等差数列中,若,则数列的前5项和等于( )A30B45C90D186 (北京卷第7题)略解:a-a=3d=9, d=3,b=,b=a=30,的前5项和等于90,故答案是C例4 记等差数列的前项和为,若,则该数列的公差( )A2 B3 C6 D7 (广东卷第4题)略解:,故选B.例5在数列中,,其中为常数,则 (安徽卷第15题)答案:1例6 在数列中, ,则( )A B C D(江西卷第5题)答案:A例7 设数列中,则通项 _(四川卷第16题)此题重点考查由数列的递推公式求数列的通项公式,抓住中系数相同是找到方法的突破口略解: ,将以上各式相加,得,故应填+1例8 若(x+)n的展开式中前三项的系数成等差数列,则展开式中x4项的系数为( )A6B7C8 D9 (重庆卷第10题)答案:B使用选择题、填空题形式考查的文科数列试题,充分考虑到文、理科考生在能力上的差异,侧重于基础知识和基本方法的考查,命题设计时以教材中学习的等差数列、等比数列的公式应用为主,如,例4以前的例题例5考查考生对于等差数列作为自变量离散变化的一种特殊函数的理解;例6、例7考查由给出的一般数列的递推公式求出数列的通项公式的能力;例8则考查二项展开式系数、等差数列等概念的综合运用重庆卷第1题,浙江卷第4题,陕西卷第4题,天津卷第4题,上海卷第14题,全国卷第19题等,都是关于数列的客观题,可供大家作为练习例9 已知an是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上. ()求数列an的通项公式; ()若数列bn满足b1=1,bn+1=bn+,求证:bn·bn+2b2n+1. (福建卷第20题)略解:()由已知,得an+1-an=1,又a1=1,所以数列an是以1为首项,公差为1的等差数列故an=1+(n-1)×1=n.()由()知,an=n,从而bn+1-bn=2n,bn=(bn-bn-1)+(bn-1-bn-2)+(b2-b1)+b1=2n-1+2n-2+2+1=2n-1. bnbn+2-b=(2n-1)(2n+2-1)-(2n+1-1)2= -2n0, bn·bn+2b对于第()小题,我们也可以作如下的证明: b2=1,bn·bn+2- b=(bn+1-2n)(bn+1+2n+1)- b=2n+1·bn+1-2n·bn+1-2n·2n+12n(bn+1-2n+1)=2n(bn+2n -2n+1)=2n(bn-2n)=2n(b1-2)=-2n<0, bn-bn+2<b2n+1.例10 在数列中,()设证明:数列是等差数列;()求数列的前项和(全国卷第19题)略解:()=1,则为等差数列, ,(),两式相减,得=对于例10第()小题,基本的思路不外乎推出后项减前项差相等,即差是一个常数可以用迭代法,但不可由b2-b1=1,b-b=1等有限个的验证归纳得到为等差数列的结论,犯“以偏盖全”的错误第()小题的“等比差数列”,在高考数列考题中出现的频率很高,求和中运用的“错项相减”的方法,在教材中求等比数列前n项和时给出,是“等比差数列”求和时最重要的方法一般地,数学学习中最为重要的内容常常并不在结论本身,而在于获得这一结论的路径给予人们的有益启示例9、例10是高考数学试卷中数列试题的一种常见的重要题型,类似的题目还有浙江卷第18题,江苏卷第19题,辽宁卷第20题等,其共同特征就是以等差数列或等比数列为依托构造新的数列主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力考虑到文、理科考生在能力上的差异,与理科试卷侧重于理性思维,命题设计时以一般数列为主,以抽象思维和逻辑思维为主的特点不同;文科试卷则侧重于基础知识和基本方法的考查,以考查具体思维、演绎思维为主例11 等差数列的各项均为正数,前项和为,为等比数列, ,且()求与; ()求和:(江西卷第19题)略解:()设的公差为,的公比为,依题意有解之,得或(舍去,为什么)故(), “裂项相消”是一些特殊数列求和时常用的方法使用解答题形式考查数列的试题,其内容还往往是一般数列的内容,其方法是研究数列通项及前n项和的一般方法,并且往往不单一考查数列,而是与其他内容相综合,以体现出对解决综合问题的考查力度数列综合题对能力有较高的要求,有一定的难度,对合理区分较高能力的考生起到重要的作用例12 设数列的前项和为,()求;()证明: 是等比数列;()求的通项公式(四川卷第21题)略解:(),所以由知, 得, ,()由题设和式知, 是首项为2,公比为2的等比数列()此题重点考查数列的递推公式,利用递推公式求数列的特定项,通项公式等推移脚标,两式相减是解决含有的递推公式的重要手段,使其转化为不含的递推公式,从而有针对性地解决问题在由递推公式求通项公式时,首项是否可以被吸收是易错点同时,还应注意到题目设问的层层深入,前一问常为解决后一问的关键环节,为求解下一问指明方向例13 数列满足(I)求,并求数列的通项公式;(II)设, ,求使的所有k的值,并说明理由(湖南卷第20题)略解:(I)一般地, 当时, 即所以数列是首项为0、公差为4的等差数列,因此当时,所以数列是首项为2、公比为2的等比数列,因此故数列的通项公式为(II)由(I)知,=于是,.下面证明: 当时,事实上, 当时, 即又所以当时,故满足的所有k的值为3,4,5.数列知识点回顾第一部分:数列的基本概念1理解数列定义的四个要点数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列在数列中同一个数可以重复出现项a与项数n是两个根本不同的概念数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2数列的通项公式一个数列 a的第n项a与项数n之间的函数关系,如果用一个公式a=来表示,就把这个公式叫做数列 a的通项公式。若给出数列 a的通项公式,则这个数列是已知的。若数列 a的前n项和记为S,则S与a的关系是:a=。第二部分:等差数列1等差数列定义的几个特点: 公差是从第一项起,每一项减去它前一项的差(同一常数),即d = aa(n2)或d = aa (nN)要证明一个数列是等差数列,必须对任意nN,aa= d (n2)或d = aa都成立一般采用的形式为: 当n2时,有aa= d (d为常数)当n时,有aa= d (d为常数)当n2时,有aa= aa成立若判断数列 a不是等差数列,只需有aaaa即可2等差中项若a、A、b成等差数列,即A=,则A是a与b的等差中项;若A=,则a、A、b成等差数列,故A=是a、A、b成等差数列,的充要条件。由于a=,所以,等差数列的每一项都是它前一项与后一项的等差中项。3等差数列的基本性质公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd若 a、 b为等差数列,则 a±b与kab(k、b为非零常数)也是等差数列对任何m、n,在等差数列 a中有:a= a+ (nm)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性、一般地,如果l,k,p,m,n,r,皆为自然数,且l + k + p + = m + n + r + (两边的自然数个数相等),那么当a为等差数列时,有:a+ a+ a+ = a+ a+ a+ 公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)如果 a是等差数列,公差为d,那么,a,a,a、a也是等差数列,其公差为d;在等差数列 a中,aa= aa= md (其中m、k、)在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的减少而减小;d0时,等差数列中的数等于一个常数设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(1),则a=4等差数列前n项和公式S=与S= na的比较前n项和公式公式适用范围相同点S=用于已知等差数列的首项和末项都是等差数列的前n项和公式S= na用于已知等差数列的首项和公差5等差数列前n项和公式S的基本性质数列 a为等差数列的充要条件是:数列 a的前n项和S可以写成S= an+ bn的形式(其中a、b为常数)在等差数列 a中,当项数为2n (nN)时,SS= nd,=;当项数为(2n1) (n)时,SS= a,=若数列 a为等差数列,则S,SS,SS,仍然成等差数列,公差为若两个等差数列 a、 b的前n项和分别是S、T(n为奇数),则=在等差数列 a中,S= a,S= b (nm),则S=(ab)等差数列a中,是n的一次函数,且点(n,)均在直线y =x + (a)上记等差数列a的前n项和为S若a0,公差d0,则当a0且a0时,S最大;若a0 ,公差d0,则当a0且a0时,S最小第三部分:等比数列1正确理解等比数列的含义q是指从第2项起每一项与前一项的比,顺序不要错,即q = (n)或q = (n2)由定义可知,等比数列的任意一项都不为0,因而公比q也不为0要证明一个数列是等比数列,必须对任意n,= q;或= q (n2)都成立2等比中项与等差中项的主要区别如果G是a与b的等比中项,那么=,即G= ab,G =±所以,只要两个同号的数才有等比中项,而且等比中项有两个,它们互为相反数;如果A是a与b的等差中项,那么等差中项A唯一地表示为A=,其中,a与b没有同号的限制在这里,等差中项与等比中项既有数量上的差异,又有限制条件的不同3等比数列的基本性质公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q( m为等距离的项数之差)对任何m、n,在等比数列 a中有:a= a· q,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性一般地,如果t ,k,p,m,n,r,皆为自然数,且t + k,p,m + = m + n + r + (两边的自然数个数相等),那么当a为等比数列时,有:aaa = aaa 若 a是公比为q的等比数列,则| a|、a、ka、也是等比数列,其公比分别为| q |、q、q、如果 a是等比数列,公比为q,那么,a,a,a,a,是以q为公比的等比数列如果 a是等比数列,那么对任意在n,都有a·a= a·q0两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积当q1且a0或0q1且a0时,等比数列为递增数列;当a0且0q1或a0且q1时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q0时,等比数列为摆动数列4等比数列前n项和公式S的基本性质如果数列a是公比为q 的等比数列,那么,它的前n项和公式是S=也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q1进行讨论当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=若S是以q为公比的等比数列,则有S= SqS若数列 a为等比数列,则S,SS,SS,仍然成等比数列若项数为3n的等比数列(q1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列二、难点突破1并不是所有的数列都有通项公式,一个数列有通项公式在形式上也不一定唯一已知一个数列的前几项,这个数列的通项公式更不是唯一的2等差(比)数列的定义中有两个要点:一是“从第2项起”,二是“每一项与它前一项的差(比)等于同一个常数”这里的“从第2项起”是为了使每一项与它前面一项都确实存在,而“同一个常数”则是保证至少含有3项所以,一个数列是等差(比)数列的必要非充分条件是这个数列至少含有3项3数列的表示方法应注意的两个问题: a与a是不同的,前者表示数列a,a,a,而后者仅表示这个数列的第n项;数列a,a,a,与集合 a,a,a,不同,差别有两点:数列是一列有序排布的数,而集合是一个有确定范围的整体;数列的项有明确的顺序性,而集合的元素间没有顺序性4注意设元的技巧时,等比数列的奇数个项与偶数个项有区别,即:对连续奇数个项的等比数列,若已知其积为S,则通常设,aq, aq, a,aq,aq,;对连续偶数个项同号的等比数列,若已知其积为S,则通常设,aq, aq, aq,aq,5一个数列为等比数列的必要条件是该数列各项均不为0,因此,在研究等比数列时,要注意a0,因为当a= 0时,虽有a= a· a成立,但a不是等比数列,即“b= a · c”是a、b、 c成等比数列的必要非充分条件;对比等差数列a,“2b = a + c”是a、b、 c成等差数列的充要条件,这一点同学们要分清6由等比数列定义知,等比数列各项均不为0,因此,判断一数列是否成等比数列,首先要注意特殊情况“0”等比数列的前n项和公式蕴含着分类讨论思想,需分分q = 1和q1进行分类讨论,在具体运用公式时,常常因考虑不周而出错数列基础知识定时练习题 (满分为100分+附加题20分,共120分;定时练习时间120分钟)一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下列四个数中,哪一个是数列中的一项 ( ) (A)380 (B)39 (C)35 (D)232在等差数列中,公差,则的值为( ) (A)40 (B)45 (C)50 (D)55 3一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是( ) (A)1997 (B)1999 (C)2001 (D)2003 4一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为( ) (A)12 (B)10 (C)8 (D)6 5已知1是与的等比中项,又是与的等差中项,则的值是( ) (A)1或 (B)1或 (C)1或 (D)1或6首项为24的等差数列,从第10项开始为正,则公差的取值范围是( )(A) (B) (C) (D)37如果-1,a,b,c,-9成等比数列,那么( )(A)b=3,ac=9(B)b=-3,ac=9 (C)b=3,ac=-9 (D)b=-3,ac=-98在等差数列a中,已知a=2,a+a=13,则a+a+a等于( ) 9已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) C. 3 D. 210若互不相等的实数成等差数列,成等比数列,且,则( )A4 B2 C2 D411在等比数列an中,a11,a103,则a2 a3 a4 a5 a6 a7 a8 a9 = ( )A. 81 B. 27 C. D. 24312 在等比数列中,前项和为,若数列也是等比数列,则等于( )(A) (B) (C) (D)【点评】本题考查了等比数列的定义和求和公式,着重考查了运算能力。13设是公差为正数的等差数列,若,则( )A B C D14设是等差数列的前项和,若,则( )A B C D15设Sn是等差数列an的前n项和,若,则 ( )(A) (B) (C) (D)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在题中横线上)1在数列中,且,则 2等比数列的前三项为,则 3 若数列满足:,2,3.则. 4设为等差数列的前n项和,14,S1030,则S9.5在数列中,若,则该数列的通项 。三、解答题(本大题共4小题,每小题10分,共40分)1已知为等比数列,求的通项式。2设等比数列的前n项和为,3 已知正项数列an,其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列an的通项an .4数列的前项和记为()求的通项公式;()等差数列的各项为正,其前项和为,且,又成等比数列,求本小题主要考察等差数列、等比数列的基础知识,以及推理能力与运算能力。满分12分。1. A 解:由等比数列的性质可得ac(1)×(9)9,b×b9且b与奇数项的符号相同,故b3,选B 解:在等差数列中,已知 d=3,a5=14,=3a5=42,选B. 解:,故选C. 10. D 解:由互不相等的实数成等差数列可设abd,cbd,由可得b2,所以a2d,c2d,又成等比数列可得d6,所以a4,选D 解:因为数列an是等比数列,且a11,a103,所以a2a3a4a5a6a7a8a9(a2a9)(a3a8)(a4a7)(a5a6)(a1a10)43481,故选A 【解析】因数列为等比,则,因数列也是等比数列,则即,所以,故选择答案C。 【解析】是公差为正数的等差数列,若,则, d=3,选B. 14. D 【解析】是等差数列的前项和,若 ,选D. 解析:由等差数列的求和公式可得且所以,故选A二、填空题 1. 99 2. 3. 解:数列满足:,2,3,该数列为公比为2的等比数列, .4.解:设等差数列的首项为a1,公差为d,由题意得,联立解得a1=2,d=1,所以S95.解:由可得数列为公差为2的等差数列,又,所以2n1三、解答题1.解: 设等比数列an的公比为q, 则q0, a2= = , a4=a3q=2q所以 + 2q= , 解得q1= , q2= 3, 当q1=, a1=18.所以 an=18×()n1= = 2×33n. 当q=3时, a1= , 所以an=×3n1=2×3n3.2.解:设的公比为q,由,所以得由、式得整理得解得所以 q2或q2将q2代入式得,所以将q2代入式得,所以3.解析:解: 10Sn=an2+5an+6, 10a1=a12+5a1+6,解之得a1=2或a1=3 又10Sn1=an12+5an1+6(n2), 由得 10an=(an2an12)+6(anan1),即(an+an1)(anan15)=0 an+an1>0 , anan1=5 (n2) 当a1=3时,a3=13,a15=73 a1, a3,a15不成等比数列a13;当a1=2时,a3=12, a15=72, 有a32=a1a15 , a1=2, an=5n3附加题 解: 引入字母,转化为递归数列模型.设第n次去健身房的人数为an,去娱乐室的人数为bn,则.,于是即 .故随着时间的推移,去健身房的人数稳定在100人左右.4.解:()由可得,两式相减得又 故是首项为,公比为得等比数列 ()设的公差为由得,可得,可得故可设又由题意可得解得等差数列的各项为正,专心-专注-专业

    注意事项

    本文(数列知识点及常用解题方法归纳总结(共32页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开