欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    全等三角形三种证明方法经典例题(共7页).docx

    • 资源ID:14965032       资源大小:100.80KB        全文页数:7页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    全等三角形三种证明方法经典例题(共7页).docx

    精选优质文档-倾情为你奉上全等三角形经典例题典型例题:知识点一:全等三角形判定1例1:如图,在AFD和EBC中,点A,E,F,C在同一直线上,有下面四个论断:(1)ADCB;(2)AECF;(3)DFBE;(4)ADBC。请将其中三个论断作为条件,余下的一个作为结论,编一道证明题,并写出证明过程。思路分析:1)题意分析:本题一方面考查证明题的条件和结论的关系,另一方面考查全等三角形判定1中的三边对应关系。 2)解题思路:根据全等三角形判定1:三边对应相等的两个三角形全等。首先确定命题的条件为三边对应相等,而四个论断中有且只有三个条件与边有关,因此应把论断中的(1)(2)(3)作为条件,来证明论断(4)。在证明全等之前,要先证明三边分别对应相等。解答过程:已知:如图,在AFD和EBC中,点A,E,F,C在同一直线上,ADCB,AECF,DFBE。求证:ADBC。证明:AECFAEEFCFEFAFCE在AFD和CEB中,AFDEBC(SSS)ACADBC解题后的思考:在运用全等三角形判定1判断三角形全等时,一定要找准三边的对应关系,然后给出证明。小结:本例题一方面考查了命题的书写与证明,另一方面通过本题的严格证明锻炼学生的逻辑思维能力,进一步规范了三角形全等证明题的书写。知识点二:全等三角形判定2例2:已知:如图,是和的平分线,。求证:(1)OABOCD;(2)。思路分析:1)题意分析:本题主要考查全等三角形判定2中的对应关系。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先证明两边及夹角分别对应相等。解答过程:证明:(1)OP是和的平分线,AOPCOP,BOPDOPAOPBOPCOPDOPAOBCOD在OAB和OCD中,OABOCD(SAS)(2)由(1)知OABOCDABCD解题后的思考:在判断三角形全等时,一定要根据全等三角形判定2,找准对应边和对应角。例3:已知:如图,ABCD,ABCD,求证:ADBC,ADBC思路分析:1)题意分析:本题主要考查全等三角形判定2的应用。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先将用于证明三角形全等的条件准备好。即如何由已知条件证明出两边和一角相等,以及如何用上ABCD这个条件。解答过程: 连接BD ABCD12在ADB和CBD中,ADBCBD(SAS)ADBC,ADBCBDADBC综上:ADBC,ADBC解题后的思考:本题中证明三角形全等用到了公共边,这是解决问题的关键所在;在解决这类问题时要善于从题目中发现这些重要的隐含条件。例4:(1)在图1中,ABC和DEF满足ABDE,ACDF,AD,这两个三角形全等吗?(2)在图2中,ABC和ABD满足ABAB,ACAD,BB,这两个三角形全等吗?思路分析:1)题意分析:本题主要考查应用全等三角形判定2判定三角形全等的方法和需注意的问题。 2)解题思路:在图1中,ABC和DEF满足ABDE,ACDF,AD,即两个三角形满足SAS的条件,所以这两个三角形全等。(2)在图2中,ABC和ABD满足ABAB,ACAD,BB,这两个三角形虽然也有两边和一角相等,但两个三角形的形状、大小完全不相同,所以这两个三角形不全等。解答过程:(1)全等;(2)不全等。解题后的思考:有两边和一角相等的两个三角形不一定全等,要根据所给的边与角的位置进行判断:(1)当两个三角形满足两边及夹角对应相等即“SAS”时,这两个三角形全等;(2)当两个三角形满足两边及其中一边的对角对应相等即“SSA”时,这两个三角形不一定全等。在证明题中尤其要注意这一点。小结:本题组主要考查了对全等三角形判定2的掌握情况,即两边和它们的夹角对应相等的两个三角形全等。另一方面,也提醒我们要注意两边和一角相等的另外一种情形,即“两边及其中一边的对角对应相等的两个三角形一定不全等。”另外,在证明两个三角形全等时,要注意挖掘题目中的隐含条件如公共边或公共角等。知识点三:全等三角形判定3 例5:如图,BEAE,CFAE,MEMF。求证:AM是ABC的中线。思路分析:1)题意分析:要证明AM是ABC的中线,就要证明BMCM,要证明线段相等,就要证明与BM、CM有关的三角形全等,即BEMCFM,然后从已知条件中找出能够判断这两个三角形全等的条件。2)解题思路:结合已知条件和对顶角相等可由ASA来判定 BEMCFM,从而得出BMCM,进而得到AM是ABC的中线。解答过程: BEAE,CFAEBEMCFM90°在BME和CMF中,BMECMF(ASA)BMCMAM是ABC的中线。解题后的思考:要证明AM是ABC的中线,需要证明M是BC的中点,因此,转化为证明BMCM,结合已知条件,应考虑证明与这两条相等线段有关的可能全等的两个三角形,结合题目中已有的条件和能够求出的相等关系,选择正确的判定方法来解决相关问题。知识点四:全等三角形判定4例6:已知:BCEF,BCEF,AD,ABFDEC。求证:AFDC。思路分析:1)题意分析:要证明AFDC,就要先证明ABFDEC,而已知中证明这两个三角形全等的条件是AD,ABFDEC,但还缺少一组边,如何找到这组边呢?根据BCEF,BCEF,想到连接BE,从而证明BFEECB,进一步得到BFEC,再利用AAS来判定两个三角形全等。2)解题思路:要证明线段相等,我们可以考虑先证明三角形全等,ABF和DEC中有两对角对应相等,要使它们全等,只要证得BFEC即可。于是连接BE证BFEECB,即可证得BFEC。解答过程:连接BEBCEFFEBCBE在BFE和ECB中,BFEECB(SAS)BFCE在ABF和DEC中,ABFDEC(AAS)AFDC解题后的思考:证明三角形全等是证明线段相等的一种重要方法,解答时要结合图形,分析已知条件与求证的结论,寻找沟通二者的桥梁。例7:在ABC中,ACB90°,直线经过点,且于,于。(1)当直线绕点旋转到图a的位置时,求证:; (2)当直线绕点旋转到图b的位置时,求证:;(3)当直线绕点旋转到图c的位置时,试问具有怎样的数量关系?请写出这个等量关系,并加以证明。 图a 图b图c思路分析:1)题意分析:要证明一条线段等于两条线段之和,或证明一条线段等于两条线段之差,就要想这条线段与两条线段之间有何关系,以及两条线段AD、BE与CE、DC之间有何关系。这就需要我们用三角形全等来证明线段相等,从而实现等线段的转化。2)解题思路:(1)于,于,又,在Rt与Rt中,直角对应相等,斜边对应相等。又与同为的余角,自然也是相等的,所以可得到。进一步可推出。(2)第(3)问中,与(1)的证明思路类似,先证明,再来证明三条线段间的数量关系。解答过程:(1), 。,。图a,。(2),。又,。图b(3)当旋转到图c的位置时,所满足的等量关系是(或ADBEDE,等)。,。又,。图c解题后的思考: 在运动变换问题中,不管运动变换前后的图形、结论是否发生变化,解题的基本思路不变,一般情况下,运动前的解题思路及方法是为解答运动后的相关问题作铺垫。小结: 本题组主要考查如何运用全等三角形判定4:两个角和其中一个角的对边对应相等的两个三角形全等。以及在运动变换问题中如何准确地运用三角形全等实现等线段的转换。知识点五:全等三角形判定5例8:已知:如图为的高,为上一点,交于,且有,。求证:。思路分析:1)题意分析:要证垂直于,需证,由题意可知,若能证明,就可得垂直于,这就要证。这可由已知条件证明,便可知。再由1290°和12BEC180°,得到BEC90°。从而得到。2)解题思路:运用直角三角形全等的判定方法:斜边和一条直角边对应相等的两个直角三角形全等,证明,进一步得到。解答过程:证明:,。在Rt和Rt中,。(全等三角形对应角相等)(直角三角形两锐角互余),解题后的思考: (1)证明两个直角三角形全等除了可运用前面的几个条件外,还可利用“斜边和直角边”去证明;(2)证明两直线垂直可直接证明两直线夹角等于90°,也可证明夹角所在三角形中的另两个角互余。小结:本组题主要考查如何运用直角三角形全等的判定方法来解决相关问题,在解题时注意挖掘题目中的隐含条件。专心-专注-专业

    注意事项

    本文(全等三角形三种证明方法经典例题(共7页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开