高中数学--函数及其表示知识点(共7页).doc
精选优质文档-倾情为你奉上 函数及其表示(一)知识梳理1函数的概念(1)函数的定义:设是两个非空的数集,如果按照某种对应法则,对于集合中的 ,在集合中都有 的数和它对应,那么这样的对应叫做从到的一个函数,通常记为_(2)函数的定义域、值域在函数中,叫做自变量, 叫做的定义域;与的值相对应的值叫做函数值, 称为函数的值域。(3) 函数的三要素: 、 和 2函数的三种表示法:图象法、列表法、解析法(1)图象法:就是用函数图象表示两个变量之间的关系;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)解析法:就是把两个变量的函数关系,用等式来表示。 3分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 4映射的概念设是两个集合,如果按照某种对应法则,对于集合中的任意元素,在集合中都有唯一确定的元素与之对应,那么这样的单值对应叫做从到的映射,通常记为 ,f表示对应法则注意:A中元素必须都有象且唯一;B中元素不一定都有原象,但原象不一定唯一。(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。例1 试判断以下各组函数是否表示同一函数?(1),;(2),(3),;(4),(5),(nN*);考点2:映射的概念例1下述两个个对应是到的映射吗?(1) ,;(2),例2若,则到的映射有 个,到的映射有 个例3设集合,如果从到的映射满足条件:对中的每个元素与它在中的象的和都为奇数,则映射的个数是( )8个 12个 16个 18个考点3:求函数的定义域题型1:求有解析式的函数的定义域(1)方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的的取值范围,实际操作时要注意: 分母不能为0; 对数的真数必须为正; 偶次根式中被开方数应为非负数; 零指数幂中,底数不等于0; 负分数指数幂中,底数应大于0; 若解析式由几个部分组成,则定义域为各个部分相应集合的交集; 如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义域不要漏写。例1.函数的定义域为()ABCD例2、函数的定义域是( ) A. B. C. D. 题型2:求复合函数和抽象函数的定义域例1已知的定义域是,求函数的定义域例2已知的定义域是(-2,0),求的定义域 例3、已知函数的定义域为-2,3,则的定义域是_考点4:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出题型1:用待定系数法求函数的解析式例1.已知函数是一次函数,且,求表达式.例2.已知是一次函数且()ABC D例3.二次函数f(x)满足f(x1)f(x)2x,且f(0)1. (1)求f(x)的解析式; (2)解不等式f (x)2x5.例4.已知g(x)x23,f(x)是二次函数,当x1,2时,f(x)的最小值为1,且f (x)g(x)为奇函数,求函数f(x)的表达式题型2:由复合函数的解析式求原来函数的解析式例1已知二次函数满足,求例2.已知_。例3已知=,则的解析式可取为 题型3:求抽象函数解析式 例1已知函数满足,求例2、已知:,求表达式.例3.设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式.1.2 函数及其表示一、 选择题1、函数的图象与直线的交点个数为()A可能无数个B只有一个C至多一个D至少一个2、设,函数的定义域为M,值域为N,则的图象可以是()22020-2BA220-2-20DC1yyyy3、函数的图象是如图中的()11-1-1-1-100001A BC D4、已知是一次函数且()ABC D5、设函数的值为()ABC D18 6、一个面积为的等腰梯形,上底长为 ,下底长为上底长的3倍,则把它的高表示成的函数为()ABCD7、函数的定义域为()ABCD8、设,则的值是()ABCD二、填空题9、已知函数分别由下表给出:123123211321则的值为_,当时,_。10、 已知_。11、函数的定义域为_。三、解答题12、若函数的图象关于直线对称,求的值。13、 已知是一次函数,且,求的解析式。考点5:求函数的值域1 求值域的几种常用方法(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,例1、例2、 (1) (2) (3) (3) 换元法:通过等价转化换成常见函数模型,例如二次函数例5、 例6、 (4)分段函数分别求函数值域,例7、例8、函数的值域是( )A B C D (5)分离常数法:常用来求“分式型”函数的值域。 如求函数的值域 (7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域(9) 对勾函数法 像y=x+,(m>0)的函数三种模型:(1)如,求(1)单调区间(2)x的范围3,5,求值域(3) x -1,0 )(0,4,求值域 (2)如 ,求(1)3,7上的值域 (2)单调递增区间(x0或x4)专心-专注-专业