欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    八年级下数学难题精选含答案(共25页).docx

    • 资源ID:14969726       资源大小:451.24KB        全文页数:25页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    八年级下数学难题精选含答案(共25页).docx

    精选优质文档-倾情为你奉上八年级数学难题精选分式:一:如果abc=1,求证:+=1二:已知+=,则+等于多少?反比例函数:一:一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:(1)求y与x之间的函数关系式;(2)“E”图案的面积是多少?(3)如果小矩形的长是6x12cm,求小矩形宽的范围.二:如图,是一个反比例函数图象的一部分,点,是它的两个端点(1)求此函数的解析式,并写出自变量的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例三:如图,已知正比例函数和反比例函数的图像都经过点M(2,),且P(,2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B (1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得OBQ与OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值四:如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B与反比例函数在第一象限的图象交于点c(1,6)、点D(3,x)过点C作CEy轴于E,过点D作DFX轴于F (1)求m,n的值; (2)求直线AB的函数解析式;勾股定理:一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文积求勾股法,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:m;第二步:=k;第三步:分别用3、4、5乘以k,得三边长”(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程二:一张等腰三角形纸片,底边长l5cm,底边上的高长225cm现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A第4张 B第5张 C第6张 D第7张三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的处目测得点 与甲、乙楼顶刚好在同一直线上,且A与B相距米,若小明的身高忽略不计,则乙楼的高度是 米四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世著名的恩施大峡谷和世界级自然保护区星斗山位于笔直的沪渝高速公路同侧,、到直线的距离分别为和,要在沪渝高速公路旁修建一服务区,向、两景区运送游客小民设计了两种方案,图(1)是方案一的示意图(与直线垂直,垂足为),到、的距离之和,图(2)是方案二的示意图(点关于直线的对称点是,连接交直线于点),到、的距离之和(1)求、,并比较它们的大小;(2)请你说明的值为最小;(3)拟建的恩施到张家界高速公路与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,到直线的距离为,请你在旁和旁各修建一服务区、,使、组成的四边形的周长最小并求出这个最小值五:已知:如图,在直角梯形ABCD中,ADBC,ABC90°,DEAC于点F,交BC于点G,交AB的延长线于点E,且(1)求证:;(2)若,求AB的长四边形:一:如图,ACD、ABE、BCF均为直线BC同侧的等边三角形.(1) 当ABAC时,证明四边形ADFE为平行四边形; (2) 当AB = AC时,顺次连结A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.二:如图,已知ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF。(1)请在图中找出一对全等三角形,用符号“”表示,并加以证明。(2)判断四边形ABDF是怎样的四边形,并说明理由。(3)若AB=6,BD=2DC,求四边形ABEF的面积。三:如图,在ABC中,A、B的平分线交于点D,DEAC交BC于点E,DFBC交AC于点F(1)点D是ABC的_心;(2)求证:四边形DECF为菱形四:在矩形ABCD中,点E是AD边上一点,连接BE,且ABE30°,BEDE,连接BD点P从点E出发沿射线ED运动,过点P作PQBD交直线BE于点Q(1) 当点P在线段ED上时(如图1),求证:BEPDPQ; (2)若 BC6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与 x的函数关系式(不要求写出自变量x的取值范围);(3)在的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PFQC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长。五:如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图,并写出它们的周长. 六:已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EFED.求证:AE平分BAD.七:如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.(1)当折痕的另一端F在AB边上时,如图(1).求EFG的面积.(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.分式:1、解:原式=+ =+ = =12、解:+=2()=92+4+2=92()=5=+=反比例函数1、解:(1)设函数关系式为 函数图象经过(10,2) k=20, (2) xy=20, (3)当x=6时, 当x=12时, 小矩形的长是6x12cm,小矩形宽的范围为2、解:(1)设,在图象上,即,其中; (2)答案不唯一例如:小明家离学校,每天以的速度去上学,那么小明从家去学校所需的时间3、 解:(1)设正比例函数解析式为,将点M(,)坐标代入得,所以正比例函数解析式为 同样可得,反比例函数解析式为 (2)当点Q在直线DO上运动时,设点Q的坐标为, 于是,而,所以有,解得 所以点Q的坐标为和 (3)因为四边形OPCQ是平行四边形,所以OPCQ,OQPC,而点P(,)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值因为点Q在第一象限中双曲线上,所以可设点Q的坐标为,由勾股定理可得,所以当即时,有最小值4,又因为OQ为正值,所以OQ与同时取得最小值,所以OQ有最小值2 由勾股定理得OP,所以平行四边形OPCQ周长的最小值是勾股定理1、解:(1)当S=150时,k=5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k倍,则三边为3k,4k,5k,而三角形为直角三角形且3k、4k为直角边其面积S=(3k)·(4k)=6k2,所以k2=,k=(取正值),即将面积除以6,然后开方,即可得到倍数2、 答案:C3、 答案:40米4、 解::图(1)中过B作BCAP,垂足为C,则PC40,又AP10,AC30 在RtABC 中,AB50 AC30 BC40 BPS1 :图(2)中,过B作BCAA垂足为C,则AC50,又BC40BA'由轴对称知:PAPA'S2BA' (2)如 图(2),在公路上任找一点M,连接MA,MB,MA',由轴对称知MAMA'MB+MAMB+MA'A'BS2BA'为最小(3)过A作关于X轴的对称点A', 过B作关于Y轴的对称点B',连接A'B',交X轴于点P, 交Y轴于点Q,则P,Q即为所求过A'、 B'分别作X轴、Y轴的平行线交于点G,A'B'所求四边形的周长为5、解:(1)证明:于点,连接,AGAG,ABAF,(2)解:ADDC,DFAC,四边形1、解:(1) ABE、BCF为等边三角形,AB = BE = AE,BC = CF = FB,ABE = CBF = 60°.FBE = CBA. FBE CBA. EF = AC. 又ADC为等边三角形,CD = AD = AC.EF = AD. 同理可得AE = DF. 四边形AEFD是平行四边形. (2) 构成的图形有两类,一类是菱形,一类是线段. 当图形为菱形时, BAC60°(或A与F不重合、ABC不为正三角形)当图形为线段时,BAC = 60°(或A与F重合、ABC为正三角形). 2、解:(1)(选证一)(选证二)证明:(选证三)证明:(2)四边形ABDF是平行四边形。由(1)知,、都是等边三角形。(3)由(2)知,)四边形ABDF是平行四边形。3、解:(1) 内. (2) 证法一:连接CD, DEAC,DFBC, 四边形DECF为平行四边形,又 点D是ABC的内心, CD平分ACB,即FCDECD,又FDCECD, FCDFDC FCFD, DECF为菱形证法二:过D分别作DGAB于G,DHBC于H,DIAC于I AD、BD分别平分CAB、ABC,DI=DG,DG=DHDH=DI DEAC,DFBC,四边形DECF为平行四边形,SDECF=CE·DH =CF·DI,CE=CFDECF为菱形 4、解:(1)证明:A=90° ABE=30° AEB=60° EB=ED EBD=EDB=30° PQBD EQP=EBD EPQ=EDB EPQ=EQP=30° EQ=EP 过点E作EMOP垂足为M PQ=2PM EPM=30°PM=PE PE=PQ BE=DE=PD+PE BE=PD+ PQ (2)解:由题意知AE=BE DE=BE=2AE AD=BC=6 AE=2 DE=BE=4 当点P在线段ED上时(如图1) 过点Q做QHAD于点H QH=PQ=x 由(1)得PD=BE-PQ=4-x y=PD·QH= 当点P在线段ED的延长线上时(如图2)过点Q作QHDA交DA延长线于点H QH=x 过点E作EMPQ于点M 同理可得EP=EQ=PQ BE=PQ-PD PD=x-4 y=PD·QH= (3)解:连接PC交BD于点N(如图3)点P是线段ED中点 EP=PD=2 PQ= DC=AB=AE·tan60°= PC=4 cosDPC= DPC=60° QPC=180°-EPQ-DPC=90° PQBD PND=QPC=90° PN=PD=1 QC= PGN=90°-FPC PCF=90°-FPC PCN=PCF1分 PNG=QPC=90° PNGQPC PG=6、证明:四边形ABCD是矩形B=C=BAD=90° AB=CDBEF+BFE=90°EFEDBEF+CED=90°BEF=CEDBEF=CDE又EF=EDEBFCDEBE=CDBE=ABBAE=BEA=45°EAD=45°BAE=EADAE平分BAD7、解:(1)过点G作GHAD,则四边形ABGH为矩形,GH=AB=8,AH=BG=10,由图形的折叠可知BFGEFG,EG=BG=10,FEG=B=90°;EH=6,AE=4,AEF+HEG=90°,AEF+AFE=90°,HEG=AFE,又EHG=A=90°,EAFEHG,EF=5,SEFG=EF·EG=×5×10=25.(2)由图形的折叠可知四边形ABGF四边形HEGF,BG=EG,AB=EH,BGF=EGF,EFBG,BGF=EFG,EGF =EFG,EF=EG,BG=EF,四边形BGEF为平行四边形,又EF=EG,平行四边形BGEF为菱形;连结BE,BE、FG互相垂直平分,在RtEFH中,EF=BG=10,EH=AB=8,由勾股定理可得FH=AF=6,AE=16,BE=8,BO=4,FG=2OG=2=4。专心-专注-专业

    注意事项

    本文(八年级下数学难题精选含答案(共25页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开