欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    函数的单调性与最值(讲义).docx

    • 资源ID:14974943       资源大小:176.23KB        全文页数:11页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    函数的单调性与最值(讲义).docx

    精选优质文档-倾情为你奉上函数的单调性与最值【知识要点】1函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(严格的)单调性,区间D叫做函数yf(x)的单调区间(3)判断函数单调性的方法根据定义;根据图象;利用已知函数的增减性;利用导数;复合函数单调性判定方法。2函数的最值前提设函数yf(x)的定义域为I,如果存在实数M满足条件(1)对于任意xI,都有f(x)M;(2)存在x0I,使得f(x0)M.(3)对于任意xI,都有f(x)M ;(4)存在x0I,使得f(x0)M.结论M为最大值M为最小值求函数最值的方法:若函数是二次函数或可化为二次函数型的函数,常用配方法;利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用单调性求最值;基本不等式法:当函数是分式形式且分子、分母不同次时常用此法。【复习回顾】一次函数具有下列性质:(1)当时,函数y随x的增大而增大(2)当时,函数y随x的增大而减小二次函数yax2bxc(a0)具有下列性质:(1)当a0时,函数yax2bxc图象开口向上,对称轴为直线x;当x时,y随着x的增大而减小;当x时,y随着x的增大而增大;(2)当a0时,函数yax2bxc图象开口向下,对称轴为直线x;当x时,y随着x的增大而增大;当x时,y随着x的增大而减小; 提出问题:如图所示为一次函数y=x,二次函数y=x2和y=-x2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律?这些函数走势是什么?在什么范围上升,在什么区间下降?如何理解图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性?定义:一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数. 简称为:步调一致增函数.几何意义:增函数的从左向右看, 图象是 的。定义:一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.简称为:步调不一致减函数.几何意义:减函数的从左向右看, 图象是 的.例 如图是定义在区间5,5上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?解:函数y=f(x)的单调区间是-5,2),-2,1),1,3),3,5.其中函数y=f(x)在区间-5,2),1,3)上是减函数,在区间-2,1),3,5上是增函数.点评:图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.【典例精讲】题型一 函数单调性的判定与证明(1)单调性的证明函数单调性的证明的最基本方法是依据函数单调性的定义来进行,其步骤如下:第一步:设元,即设x1,x2是该区间内的任意两个值,且x1x2;第二步:作差,即作差f(x1)f(x2);第三步:变形,即通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形;第四步:判号,即确定f(x1)f(x2)的符号,当符号不确定时,可以进行分类讨论;第五步:定论,即根据单调性的定义作出结论其中第三步是关键,在变形中一般尽量化成几个最简因式的乘积或几个完全平方的形式利用单调性定义的等价形式证明:设x1,x2m,n,x1x2,那么(x1x2)f(x1)f(x2)00f(x)在区间m,n上是增函数;(x1x2)f(x1)f(x2)00f(x)在区间m,n上是减函数(2)复合函数yf(g(x)的单调性:g(x)f(x)f(g(x)增增增增减减减增减减减增复合函数的单调性可简记为“同增异减”,即内层函数g(x)与外层函数f(x)的单调性相同时yf(g(x)是增函数,单调性相反时yf(g(x)是减函数(3)判断复合函数单调性的步骤:以复合函数yf(g(x)为例可按下列步骤操作:将复合函数分解成基本初等函数:yf(t),tg(x);分别确定各个函数的定义域;分别确定分解成的两个基本初等函数的单调区间;若两个基本初等函数在对应的区间上的单调性是同增或同减,则yf(g(x)为增函数;若为一增一减,则yf(g(x)为减函数例1 用定义法求证函数在R为增函数变式1 用定义法求证函数在增函数变式2 证明:函数在定义域上是减函数例2 求函数y的单调区间题型二 图像法求函数的单调区间例3 求出下列函数的单调区间:(1); (2).(3);(4).变式1 用图像法求下列函数的单调区间(1)(2)(3)变式2 求函数的单调区间和值域。题型三 抽象函数的单调性例4(1)已知函数是减函数,则与的大小关系是 (2)已知函数是减函数,解不等式 (3)已知是定义在(0,+)上的减函数,若成立,则a的取值范围是_.变式 函数f(x)对任意的a,bR,都有f(a+b)=f(a)+f(b)-1,并且当x0时,f(x)1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)3. 题型四 已知函数的单调性求参数的取值范围例5 已知函数在R上是增函数,则a的取值范围是 变式1若f(x)x22(a1)x4是区间(,4上的减函数,则实数a的取值范围是_ 变式2 (1)画出已知函数的图象; (2)证明函数在区间(-,1上是增函数; (3)当函数f(x)在区间(-,m上是增函数时,求实数m的取值范围.题型五 函数的最值例6 如图所示,是函数的图象.观察这三个图象的共同特征.在函数y=f(x)的图象上任取一点A(x,y),如图所示,x的范围是函数的 ,y的范围是函数的 。图1-3-1-12怎样理解函数图象最高点的?设点C的坐标为(x0,y0),用数学符号解释:函数y=f(x)的图象有最高点C?函数最大值的定义?一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.函数最大值的定义中即,这个不等式反映了函数的函数值具有什么特点?其图象又具有什么特征?函数最大值的几何意义是什么?函数最大值吗?为什么?点是不是函数的最高点?由这个问题你发现了什么值得注意的地方?类比函数的最大值,请你给出函数的最小值的定义及其几何意义.例7 求函数y=在区间上的最大值和最小值.例8 求函数,的最值。变式 函数y=在2,3上的最小值为( )A.2 B. C. D.- 【课堂练习】1下列函数中,在区间(0,2)上为增函数的是( )A.y=-x+1 B.y= C.y=x2-4x+5 D.y=2如果函数f(x)=x2+2(a-1)x+2在区间(-,4上是减函数,则实数a的取值范围是( )A.-3,+) B.(-,-3 C.(-,3 D.3,+)3.若一次函数y=f(x)在区间-1,2上的最小值为1,最大值为3,则函数f(x)的解析式为_.4.设x1,x2为yf(x)的定义域内的任意两个变量,有以下几个命题:(x1x2)f(x1)f(x2)>0; (x1x2)f(x1)f(x2)<0;>0; <0.其中能推出函数yf(x)为增函数的命题为_.(填序号)5.(1)已知函数在上是增函数,则的取值范围是 (2)已知函数在上是单调函数,则的取值范围是 6.用定义法求证函数在减函数【课外作业】函数yx2的单调减区间是()A0,) B(,0 C(,0) D(,)函数f(x)2x2mx3,当x2,)时,f(x)为增函数,当x(,2时,函数f(x)为减函数,则m等于()A4B8 C8 D无法确定函数f(x)在R上是增函数,若ab0,则有()Af(a)f(b)f(a)f(b) Bf(a)f(b)f(a)f(b)Cf(a)f(b)f(a)f(b) Df(a)f(b)f(a)f(b)已知为上的减函数,则满足的实数的取值范围是()5. 若函数f(x)4x2kx8在5,8上是单调函数,则k的取值范围是_6.已知f(x)是定义在1,1上的增函数,且f(x1)f(13x),求x的取值范围7.若f(x)x2bxc,且f(1)0,f(3)0.(1)求b与c的值; (2)试证明函数f(x)在区间(2,)上是增函数(3)若a>0且f(x)在(1,)内单调递减,求a的取值范围.专心-专注-专业

    注意事项

    本文(函数的单调性与最值(讲义).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开