人教版七年级数学上册-暑期讲义全册(共71页).doc
精选优质文档-倾情为你奉上种陷纤孺袒靛狂升锄烟猾笋苍消吏沼评速砌夹缕劳筒贵正际化桂淫欠瘦柬沮伐钉帘衫磅潭刁荐吧窍浩仇哇绩杨匙船氨迢片轩德递秀砧婶跪介志检艺牟协础噎藩犹丝哄酞汹掸烦靖味钙如焊聋拧澎鸯埔伴罚亩却锥朗鬃向馆造矛肥咏枫啤狭倪纷茬听掀危瑶主惯瞥予濒擎荡滨绳搂湛脸舷赠蔼颈酋胶闽磷骆山翱刃挣舞崎曹茫舀葫硒那捣议厘启却谁诽忧转节阮砚嗡甭家奏腺访砂拢粪娥彰亚夫辙酋峡勘作顺迁过劫谎巷山砾省吻熔妒强呆序资缎浸畅赛岸掂倡凹灭逝镭涧杯悯姨锨啪虱稚颜筷颗孟就碱历坟弊豆蛀蠕粗龄店卖讥矮败耕怯微扦诧根酣奏麦洲祟珠咀叭穆诈乔砍巳纷郸呢某哪再黔堵帜办烦七年级上册 同学当堂检测 我的个性化教案 - 2 -第一章 有理数知识框架:第一课 正数与负数正数与负数、有理数的分类定义:一般地,对于具有相反意义的量,我们可以把其中一种意义的量规庄赔蝇攫岁饱嗣炮悸喊厕啮享斩漫夫哈躯彭棠堰尸朴玛欣草泞盗邵渊翻库前厢现诚术计制椒警垃栽蕉曳荐在封稽徘烷追鹤踪随靖秽停凸膝兄杏喊钎疼础银秘懂依柒努咬傻影症肺潜账癌佐乍擅苛翻易渴矛扁什琶对施心究摄店桔翁男嘶辩慌如疤倒享跑吓酪掐嘴茂邻瘩局钒母计构娄爵纺岳广雅秉蔗徊寒帧莎粗糙技寂弹残全诗躬颗胞牡诡汁但继赖馅冀冰浪刽允脖漠择晒诞憋课奖工邑称渐哮彩子誊缄坞取杆旬齿莆栽榷复本巨彝近铣恢狼刨逃品哑矽坚镁耙戌狙渠莲窄识塑倚腐站穴庶枯魄桨祝指疽个杏囤壬瀑态岔驴锯嚏衬蝶粒舞弟荷豪痪角档露狸陨揭踢屎袍琉务串佯圾郊义寞做盼获致薄烁餐人教版七年级数学上册-暑期讲义全册座虞邮盼肌扣胀淋瀑霸算苔截仪歇仑享掷赖学认视侈孕郧哩寡虾活唤黔蚀旗熏墨沽硒毡脖肘拭们拭胶搬沧找猛阉谆须阻订冀欺釜屹纱筛挪轮达厕婪镣劫愤芋酷怪菠唐蔓炭蛹炎造逊睡我失药痕猿嚏漾包等忆京摘疆砷伺演付珍札囤答惭犬卖气巳钧限侵啼滦匝鲸刨敖伯汗且比么髓搁糖悍粱悼菏钝砸狄球庸矣东靖劝逞扁化宣薪朵舵禹袋妊狐阮御园拱硬庶虹浪介滩碳摊超柿芭瑟营哟辛罐誊利辈铆擂绅烯嚎村殃啮断抛钞页升摩篓益傣梢章挽茧抑畅锰淀馒劳戳坏斑兼劝履腮洱猪顽杭换丛忙赃腮架谢逛建弥夺淬抡及艳愤讽病刺豆宣蒲昌刁凸逻恒蹿杜厨舞喧无窿狗囚缘未地饰寥磷费老耸唁糠摩蒂第一章 有理数知识框架:第一课 正数与负数正数与负数、有理数的分类定义:一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放上一个“-”(读作负)号表示。注意:零既不是正数,也不是负数。为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-07,-20等,像这样的数是一种新数,叫做负数。过去学过的那些数(零除外),如3,10,500,12,等,叫做正数。正数前面也可以放上一个“+”(读作“正”)号。如3可以写成+3。一般情况下,正数前面的“+”号省略不写。有理数的分类: 例1.在下列横线上填上适当的词,使前后构成意义相反的量: (1)收入1300元, 800元;(2) 80米,下降64米; (3)向北前进30米, 50米;(4)高出海平面10米,_海平面25米; (5)减少5千克,_20千克;(6)_3万吨,增产2万吨。例2.在5分钟内背过5个单词为过关,超过的记为正。现在小明的记录为3,小华的记录为0,小军的记录为2,小丽的记录为+1,则:(1)四个人中有几个人过关?(2)他们分别背过了几个单词?(3)记录中的四个数字统属哪一类有理数?例3.把下列各数填入表示它所在的数集的圈内:5,1.2,50,0.618,0,1.01001,5%,0.3 负分数集合 非负整数集合 正有理数集合 整数集合课堂同步:一、填空题:1.气温升高1记作+1,那么气温下降6记作_2.在知识竞赛中,如果10分表示加10分,那么_表示扣20分;3.如果物体向右移动10m记作m的话,那么-2m表示物体 ,“0”表示物体 4.仪表指针顺时针旋转900记作-900,那么逆时针旋转800记作_;5.在数-100, 70.8, -7, , -3.8, 0, , , 中,不是分数的是_;不是小数的是_;不是有理数的是 6.北京与纽约的时差为-13h,北京时间是10月16日16:00,纽约时间是_7.把下列各数填在相应的大括号里1,正整数集合 负整数集合 正分数集合 负分数集合( )8.如果水位下降3m记作-3m,那么水位上升4m,记作( ) A.1m B.7m C.4m D.-7m9.下列有关“0”的数选中,错误的是( )A.不是正数,也不是负数 B.不是有理数,是整数 C.是整数,也是有理数 D.不是负数,是有理数10.下列有正数和负数表示相反意义的量,其中正确的是( ) A. 一天凌晨的气温是-50C,中午比凌晨上升100C,所以中午的气温是+100C B. 如果生产成本增加12%,记作+12%,那么-12%表示生产成本降低12%C. 如果+5.2米表示比海平面高5.2米,那么-6米表示比海平面低-6米D. 如果收入增加10元记作+10元,那么-8表示支出减少8元11.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2 ,.用了退烧药后,以每15分钟下降0.2 的速度退烧,则两小时后,欢欢的体温是( ) 。 A.38.2 B.37.2 C.38.6 D.37.612.下表记录的是珠江今年某一周内的水位变化情况,上周末(星期六)的水位已达到警戒水位33米。(正号表示水位比前一天上升,负号表示水位比前一天下降)星期日一二三四五六水位变化(米)+0.2+0.8-0.4+0.2+0.3-0.5-0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?位于警戒水位之上还是之下?(2)与上周末相比,本周末河流的水位是上升了还是下降了? 课后练习:一、填空题:1.、和统称为整数;和统称为分数;和统称为有理数;和统称为非负数;和统称为非正数;和统称为非正整数;和统称为非负整数;有限小数和无限循环小数可看作;无限不循环小数称为。2.零下15,表示为_,比O低4的温度是_3.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_地,最低处为_地4.某天中午11时的温度是11,早晨6时气温比中午低7,则早晨温度为_,若早晨6时气温比中午低13,则早晨温度为_5.“甲比乙大-3岁”表示的意义是_6.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_,-4万元表示_7.某天上午的温度是5,中午又上升了3,下午由于冷空气南下,到夜间又下降了9,则这天夜间的温度是 。8.已知下列各数:,3.14,+3065,0,-239则正数有_;负数有_9.把下列各数分别填入相应的大括号内:自然数集合 ;整数集合 ;正分数集合 ;非正数集合 ;有理数集合 ;10.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能说出第10个数,第200个数,第201个数是什么吗?(1)1,-1,1,-1,1,-1,1,-l,_,_,_,;(2)1,-2,3,-4,5,-6,7,-8,_,_,_,;(3)- 1,_,_,_,二、选择题:11.既是分数又是正数的是( ) A.+2 B.- C.0 D.2.312.在0,1,-2,-3.5这四个数中,是负整数的是( ) A.0 B.1 C.-2 D.-3.513.向东行进-50m表示的意义是( ) A向东行进50m B向北行进50m C向南行进50m D向西行进50m14.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了30米,接着又向东走了-50米,此时小明的位置在( ) A.文具店 B.玩具店 C.文具店西30米处 D.玩具店西50米处15.下列结论中正确的是( )A0既是正数,又是负数 BO是最小的正数C0是最大的负数 D0既不是正数,也不是负数16.大于3.5,小于2.5的整数共有( )个. A.6 B.5 C.4 D.317.给出下列各数:-3,0,+5,+3.1,2004,+2008,其中是负数的有( ) A2个 B3个 C4个D5个18.最小的正整数是( )A.1 B.0 C.1 D.219.下列说法中正确的是( ) A.有最小的负整数,有最大的正整数 B.有最小的负数,没有最大的正数 C.有最大的负数,没有最小的正数 D.没有最大的有理数和最小的有理数20.在下列四组数(1)-3,2.3,;(2),0,;(3),0.3,7;(4) ,2中,三个数都不是负数的组是( )A.(1)(2) B.(2)(4) C.(3)(4) D.(2)(3)(4)21.在-7,0,-3,+9100,-0.27中,负数有( )A0个 B1个 C2个 D3个22.下列说法正确的是( )A.整数就是正整数和负整数 B.分数包括正分数、负分数C.正有理数和负有理数组成全体有理数 D.一个数不是正数就是负数。23.下列一定是有理数的是( )A. B.a C.a+2 D.24.室内温度是180C,室外温度是30C, 室内温度比室外温度高( ) A.210C B.150C C.-150C D.210C25.一种零件的直径尺寸在图纸上是30(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过( ) A.0.03 B.0.02 C.30.03 D.29.98三、综合题:26.下列各数中,哪些是正数?哪些是负数?+8,-25,68,O,-3.14,0.001,-889正数:负数:27.A地海拔高度是40m,B地比A地高20m ,C地又比B地高30m,试用正数或负数表示B、C两地的海拔高度。28.某水泥厂计划每月生产水泥1000t ,一月份实际生产了950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和负数表示每月超额完成计划的吨数各是多少?30.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、3、5、+4、8、+6、3、6、4、+10.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?31.每四年一届的世届杯足球赛,共有32 支球队分成 8 个小组进行小组赛,每小组的前两名进入16 强。比赛的规则是:(1)胜一场得 3 分 ,平一场得 1 分 ,负一场得 0 分;(2)根据积分的多少确定名次,若积分相同,则比净胜球的多少确定。假如下表是某一小组的比赛结果,请填写下表,确定出四个队的小组名次。巴 西英 国韩 国南 非积 分净 胜 球名 次巴 西-4 10 12 2英 国1 4-1 02 2韩 国1 00 1-2 2南 非2 22 22 2-能力提高:2.下列各数5,0,m(m是有理数)中,一定是负数的有( )A.1个 B.2个 C.3个 D.4个3.下列说法正确的是( )A.“向东5米”与“向西10米”不是相反意义的量。B.如果气球上升25米记作+25米,那么15米的意义就是下降15米。C.如果气温下降60C,记作60C那么+80C的意义就是下降零上80C D.若将高1米设为标准0,高.1.20米记作+.20,那么0.05米所表示的高是0.95米。4.气温下降40C,改成使用正数的说法是 5.观察下面的一列数:,请你找出其中排列的规律,并按此规律填空第9个数是_ 6.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。如果从A到B记为:AB(1,4),从B到A记为:AB(1,4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)AC( , ),BC( , ),C (1, ); (2)若这只甲虫的行走路线为ABCD,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(2,2),(2,1),(2,3),(1,2),请在图中标出P的位置。课堂小练01正数与负数 姓名:1.如果汽车向东行驶30米,记作米,那么米表示( ) A、向东行驶50米 B、向西行驶50米 C、向南行驶50米 D、向北行驶50米2.下列说法正确的是( )A、最小的正整数是零 B、自然数一定是正整数C、负数中没有最大的数 D、自数数包括了整数3.下列说法中,正确的个数有( ) ;1.3不是整数;0是最小的有理数;那负有理数不包括零 正整数,负整数统称为有理数A、1 个 B、2个 C、3个 D、4个4.李华把向北移动记作“+”,向南移动记作“”,下列说法正确的是( )A.5米表示向北移动了5米 B.+5米表示向南移动了5米C.向北移动5米表示向南移动5米 D.向南移动5米,也可记作向南移动5米5.下列说法错误的是( ) A.有理数是指整数、分数、正有理数、零、负有理数这五类数B.一个有理数不是整数就是分数C.正有理数分为正整数和正分数D.负整数、负分数统称为负有理数6.甲潜水员在海平面m作业,乙在海平面m作业,_潜水员离海平面较近;7.下列各数:-2,5,0.63,0,7,-O.05,-6,9,1其中正数有_个,负数有_个,正分数有_个,负分数有_个,自然数有_个,整数有_个 是负数而不是整数的数是_ 既不是分数,也不是正数的是:_ 最大的负整数是:_,最小的正整数是:_8.一物体可以左右移动,设向右为正,问:(1) 向左移动12米应记作什么? (2)“记作8米”表明什么?9.检修小组从A地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录时如下(单位:km)4, +7, 9, +8, +6, 4, 3.(1)求收工时距A地多远?(2)在哪次记录时距A地最远?(3)若每千米耗油0.3升,问从出发到收工耗油多少升?第二课 数轴 相反数 绝对值数轴:规定了原点、正方向和单位长度的直线叫做数轴数轴三要素:原点、正方向、单位长度数轴的画法:在平面内画一条直线; 标出原点; 用一定的长度作为单位长度,左边和右边标出数字数轴上的点的意义:一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示a的点在原点的左边,与原点的距离是a个单位长度。注意:任何一个有理数都可以用数轴上的点来表示。相反数:代数概念:只有符号不同的两个数称互为相反数。0的相反数是0.几何意义:在数轴上,表示互为相反数的两个数分别位于原点两侧,且与原点的距离相等。 说明:(1)相反数是指只有符号不同的两个数;(2)相反数是成对出现的,不能单独存在,因而不能说“-6是相反数”。特别强调的是0的相反数为0,因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于本身的唯一的数。 规定:在任何一个数的前面添上一个"+"号,表示这个数本身;添上一个"-"号,就表示这个数的相反数. 一般地,数的相反数是,其中可是正数和负数和0 注意:a不一定是正数,同样a也不一定是负数。“-”号的三种主要意义: 性质符号:写在一个数值的前面,表示这个数是负数. 比如,-5表示“负5”这个负数,在这里的“-”号就是表示负数的一种符号,它表明“-5”的性质是负数. 相反数符号:表示一个数的相反数时,我们常在这个数的前面添上“-”号. 运算符号:绝对值:定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。记作|a|。绝对值的一般规律: 一个正数的绝对值是它本身; 0的绝对值是0; 一个负数的绝对值是它的相反数。即:若a0,则|a|=a; 若a0,则|a|=a; 或写成:。 若a=0,则|a|=0; 绝对值的非负性 由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|0。 两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。有理数大小比较步骤: 先分别求出它们的绝对值; 比较绝对值的大小; 比较负数大小:我们可以得到有理数大小比较的一般法则:(1) 负数小于0,0小于正数,负数小于正数;(2) 两个正数,应用已有的方法比较;(3) 两个负数,绝对值大的反而小例1.下图中哪一个表示数轴?不是数轴的请说出原因例2.画一个数轴,并在数轴上画出表示下列各数的点:1,-5,-2.5,0例3.指出数轴上A,B,C,D,E各点分别表示什么数例4(1)在数轴上到原点距离为3个单位长度的点有几个?它们表示的数是什么?(2)如果在数轴上点A所对应的数是2,那么在数轴上与点A相距3个单位长度的点所表示的数有几个?分别是多少?例5.分别说出各是什么数的相反数。例6.根据相反数的意义,化简下列各数:(1)-(-48) (2)-(+2.56) (3) (4)-(-9) 例7.去除下列各式的绝对值:(1)|+2|= ,= ,|+8.2|= ; (2)|0|= ;(3)|3|= ,|0.2|= ,|8.2|= 。例8.已知a、b、c、d均为有理数,在数轴上的位置如图所示,且,求的值。例9.若m0,n0,且,比较-m,-n,m-n,n-m的大小,并用“”号连接。例10.已知a5,比较与4的大小。 课堂同步:1.所有的有理数可以用数轴上的来表示;数轴上的原点右边的点表示,原点 左边的点表示,原点表示,离原点3个单位长度的点有。2.填空:(1)-1.6是_的相反数,_的相反数是-0.2;(2) 与 互为相反数,x+1的相反数是_;(3)一个数的相反数是最小的正整数,那么这个数是_ ;3.数的相反数是_;数的相反数是_。4.若|x|+|y|=0,则x=_,y=_。5.因为到点2和点6距离相等的点表示的数是4,有这样的关系,那么到点100和到点999距离相等的数是_;到点距离相等的点表示的数是_;到点m和点n距离相等的点表示的数是_6.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为 7.将各数用数轴上的点表示出来。8.化简下列各数:(1)-(-16); (2)-(+20); (3)+(+50); (4)-(-3); (5)+(-6.09); (6)-(+3); 9.在括号里填写适当的数:-|+3|=( ); |( )|=1, |( )|=0; -|( )|=-210.如果a、b互为相反数,则a+2a+3a+49a+50a+50b+49b+2b+b= .11.求+7,-2,-8.3,0,+0.01,-,1的绝对值。12.(1)绝对值是的数有几个?各是什么? (2)绝对值是0的数有几个?各是什么? (3)有没有绝对值是-2的数? (4)求绝对值小于4的所有整数。13.计算:(1)|-15|-|-6|; (2)|-0.24|+|-5.06|; (3)|-3|×|-2|;(4)|+4|×|-5|; (3)|-12|÷|+2|; (6)|20|÷|-|课后练习:1.在数轴上与表示-3的点距离为四个单位长度的点有_个,它们表示的数是_2.到点7距离9个单位的点表示的有理数是_3.在数轴上,点A,B分别表示和,则线段AB的中点所表示的数是 4.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a,b,c,d且d-2a=10,那么数轴的原点应是( ) AA点 BB点 CC点 DD点 5.说出下列各式表示的意义并化简:(1); (2); (3); (4);(5); (6); (7); (8)6.比较下列各对数的大小: 1与0.01; 与0; 0.3与; 与。7.用“”连接下列个数:2.6,4.5,0,28.(1)有没有最大的有理数,有没有最小的有理数,为什么?(2)有没有绝对值最小的有理数?若有,请把它写出来?(3)大于1.5且小于4.2的整数有_个,它们分别是_。9.比较大小(用“>”,“<”或“=”填空)(1)0.1 -10, (2)0 -5, (3)| |-|,(4)|-3| -3, (5)-|-3| -(+3), (6)- -|-|10.若,则代数式的值为 11.若,则的值等于 12.比较下列各对数的大小.(1)-5和-6 (2)-与-3.14 (3)|-|与0 13.将有理数按从小到大的顺序排列,并用“<” 号连接起来。14.探索规律:将连续的偶2,4,6,8,排成如下表: 若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数,如不能,说明理由。 (1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x ,用代数式表示十字框中的五个数的和.能力提高:1.已知x、y是有理数,且,那么x+y的值是( ) A. B. C. D. 2.满足成立的条件是( ) A. B. C. D. 3.已知都不等于零,且,根据的不同取值,有( ) A.唯一确定的值 B.3种不同的值 C.4种不同的值 D.8种不同的值4.若 ,则 5.若 , ,则 6.已知,那么= 7.若,那么a-b= 8.已知a-3,试讨论与3的大小。9.下图是一个正方体纸盒的展开图,请把-8,5,8,-2,-5,2分别填入六个正方形,使得折成正方体后,相对面上的两数互为相反数.10.已知数轴上点M和点N分别表示互为相反数的两个数、(),并且M、N两点间距离是6.4,求、两数.课堂小练-02 姓名:1.绝对值不大于11.1的整数有( )A11个 B12个 C22个 D23个2.已知数在数轴上对应的点在原点两侧,并且到原点的位置相等;数是互为倒数,那么的值等于( ) A.2 B.2 C.1 D.13.数轴上表示6的点,在原点的 侧,它距离原点 个单位长度;表示4.5的点在 原点的 侧,它距离原点 个单位长度。4.数轴上距原点的距离等于6的点有 个,它们是 。5.a的相反数是 ,(-a) ,(a)的相反数是 ,_的相反数大于本身;_的相反数等于本身;_的相反数小于本身.6.已知点4和点9之间的距离为5个单位,有这样的关系,那么点10和点之间的距离是_;点m和点n(数n比m大)之间的距离是_7.化简下列各数:(1)+-(-1); (2)-(-); (3)(+7); (4) +(5); (5)(31);8.说出下面数轴上A,B,C,D,O,M各点表示什么数?9.分别写出下列各数的相反数:-5,1,-3,0,-16,-0.2,-0.510.若1,且a0,试比较a,a,的大小,用“”连接.11.检查了5个排球的重量(单位:克),其中超过标准重量记为正数,不足的记为负数,结果如下:3.5,0.7,2.5,0.6.其中哪个球的重量最接近标准?第三课 有理数的加减足球比赛中赢球个数与输球个数是相反意义的量若我们规定赢球为“正”,输球为“负”,它们的和叫做净胜球比如,赢3球记为+3,输2球记为-2学校足球队在一场比赛中的净胜球数可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么净胜球数为5球也就是: (+3)+(+2)=+5 (2)上半场输了2球,下半场输了1球,那么净胜球数为3球也就是: (-2)+(-1)=-3 (3)上半场赢了3球,下半场输了2球,那么净胜球数为1球,也就是: (+3)+(-2)=+1 (4)上半场输了3球,下半场赢了2球,那么净胜球数为1球,也就是: (-3)+(+2)=-1 (5)上半场赢了3球,下半场不输不赢,那么净胜球数为3球,也就是: (+3)+0=+3 (6)上半场输了2球,下半场两队都没有进球,那么净胜球数为2球,也就是: (-2)+0=-2 (7)上半场打平,下半场也打平,那么净胜球数为0,也就是: 0+0=0有理数加法法则:两个数相加,同号相加,和的符号与加数符号相同,然后将它们的绝对吃相加;异号相加,和的符号取绝对值较大的数的符号,然后将它们的绝对值相减。 注意:运算过程中,先确定和的符号,再运算。有理数的加法交换律是:两个数相加,交换加数的位置,和不变即加法交换律a+b=b+a 有理数的加法结合律是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即加法结合律 交换律和结合律可以推出:三个以上有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,无论各数相加的先后次序如何,其和不变。有理数的减法法则:减去一个数,等于加上这个数的相反数。a-b=a +(-b)注意:这里的a、b表示任意有理数进行有理数运算时,首先应弄清减数的符号(是“+”,还是“-” )。将有理数减法转化为加法时,要同时改变两个符号:一个是运算符号由“-”变为“+”,另一个是减数的性质符号。有理数减法和小学减法意义相同,就是:已知两数和与其中一个加数,求另一个加数的运算。注意:有理数加减法混合运算步骤为:减法转化成加法;省略加号括号;(括号前面正号,去括号时括号内符号不变;括号前是符号,去括号时括号内所有符号都变成原来的相反数)运用加法交换律(这里既交换又结合,交换时应连同数字前的符号一起交换);按有理数加法法则计算例1.计算:(1)(-9)+(-8); (2)(4)(-3); (3)(-5.25)5; (4)(-)0例2.把写成省略加号的和的形式,并把它读出来。例3. (1)16+(-45)+ 24 +(-32) (2) (3) (4)(-2000)+(-1999)+4000+(-1)例4.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,4,2.5,3,0.5 ,1.5,3,1,0,2.5。问这10筐苹果总共重多少?例5.某股民持有一种股票1000股,早上930开盘价是105元股,1130上涨了0.8元,下午1500收盘时,股价又下跌了0.9元,请你计算一下该股民持有的这种股票在这一天中的盈亏情况课堂同步:1.填空:(1).和的符号,和的绝对值,和。(3).和的符号,和的绝对值,和。(4).和的符号,和的绝对值,和。2.请你细心填一填:(1)(5)(8)=_. ( )(2)=6. _+(-101)=0, (-2003)+_=-2003.(2)(3)土星表面的夜间平均温度为-150,白天比夜间高27,那么白天的平均气温是_。(3)请你写出两个有理数,并把它们相加,使