高中数学必修五数列求和方法总结附经典例题和答案详解.docx
-
资源ID:14988277
资源大小:121.03KB
全文页数:5页
- 资源格式: DOCX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
高中数学必修五数列求和方法总结附经典例题和答案详解.docx
精选优质文档-倾情为你奉上数列专项之求和-4(一)等差等比数列前n项求和1、 等差数列求和公式: 2、等比数列求和公式:(二)非等差等比数列前n项求和错位相减法 数列为等差数列,数列为等比数列,则数列的求和就要采用此法.将数列的每一项分别乘以的公比,然后在错位相减,进而可得到数列的前项和.此法是在推导等比数列的前项和公式时所用的方法.例23. 求和:例24.求数列前n项的和.裂项相消法一般地,当数列的通项 时,往往可将变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项:设,通分整理后与原式相比较,根据对应项系数相等得,从而可得常见的拆项公式有: 例25. 求数列的前n项和.例26. 在数列an中,又,求数列bn的前n项的和.分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:找通向项公式由通项公式确定如何分组.例27. 求数列n(n+1)(2n+1)的前n项和.例28. 求数列的前n项和:倒序相加法如果一个数列,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特征:例29.求证:例30. 求的值记住常见数列的前项和:答案详解例23. 解:由题可知,的通项是等差数列2n1的通项与等比数列 的通项之积。 . 设. (设制错位)得 (错位相减)再利用等比数列的求和公式得: 例24. 解:由题可知,的通项是等差数列2n的通项与等比数列的通项之积。设 (设制错位)得 (错位相减) 例25. 解:设 (裂项) 则 (裂项求和) 例26. 解: (裂项) 数列bn的前n项和 (裂项求和) 例27. 解:设 将其每一项拆开再重新组合得 Sn (分组) (分组求和) 例28. 解:设将其每一项拆开再重新组合得 (分组) 当a1时, (分组求和) 当时,例29. 证明: 把式右边倒转过来得 (反序) 又由可得 +得 (反序相加) 例30. 解:设. 将式右边反序得 . (反序) 又因为 +得 (反序相加) 89 S44.5专心-专注-专业