浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(提高)知识讲解(共8页).doc
-
资源ID:14994182
资源大小:502KB
全文页数:8页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(提高)知识讲解(共8页).doc
精选优质文档-倾情为你奉上图形的初步认识全章复习与巩固(提高)知识讲解 【学习目标】 1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1. 直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线 (2)线段:两点之间线段最短要点诠释:本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB,如下图:4线段的比较与运算(1)线段的比较:度量法;叠合法;估算法.(2)线段的和与差:如下图,有AB+BCAC,或ACa+b;ADAB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点如下图,有:. 要点诠释:线段中点的等价表述:如上图,点M在线段上,且有,则点M为线段AB的中点.除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P均为线段AB的四等分点,则有.要点三、角1角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:角的两种定义是从不同角度对角进行的定义.当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.2.角的分类锐角直角钝角平角周角范围090°90°90°<<180°180°360°3.角的度量1周角360°,1平角180°,1°60,160.要点诠释:度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一成60.4.角的比较与运算(1)角的比较方法: 度量法;叠合法;估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是AOB的平分线,所以1=2=AOB,或AOB=21=22. 类似地,还有角的三等分线等.5.余角、补角 (1)定义:若1+290°, 则1与2互为余角.其中1是2的余角,2是1的余角.若1+2180°,则1与2互为补角.其中1是2的补角,2是1的补角.(2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.只考虑数量关系,与位置无关“等角是相等的几个角”,而“同角是同一个角”6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、几何图形1.对于棱柱体而言,不同的棱柱体由不同的面构成: 三棱柱由2个底面,3个侧面,共5个面构成; 四棱柱由2个底面,4个侧面,共6个面构成; 五棱柱由2个底面,5个侧面,共7个面构成; 六棱柱由2个底面,6个侧面,共8个面构成;(1)根据以上规律判断,十二棱柱共有多少个面?(2)若某个棱柱由24个面构成,那么这个棱柱是什么棱柱?(3)棱柱底面多边形的边数为,则侧面的个数为多少?棱柱共有多少个面?(4)底面多边形边数为的棱柱,其顶点个数为多少个?有多少条棱?【答案与解析】解:(1)十二棱柱由2个底面,12个侧面,共14个面构成 (2)这个棱柱有24个面,由于底面有2个,故其侧面共有22个,从而这个棱柱是二十二棱柱 (3)棱柱底面多边形的边数与侧面的个数是相等的,即底面多边形的边数为n,则侧面的个数也为n,棱柱的面数为(n+2) (4)底面多边形的边数为n的棱柱,其顶点个数为2n个,共有3n条棱【总结升华】根据立体图形的特点,从特殊到一般,寻找规律举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的几何体是( ) A. B. C. D. 【答案】B类型二、线段和角的概念或性质2.下列判断错误的有( ) 延长射线OA;直线比射线长,射线比线段长;如果线段PAPB,则点P是线段AB的中点;连接两点间的线段,叫做两点间的距离 A0个 B2个 C3个 D4个【答案】D【解析】由于射线向一方无限延伸,因此,不能延长射线;由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;线段PAPB,只有当点P在线段AB上时,才是线段AB的中点,否则就不是;两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同【总结升华】本题考查的是基本概念,要抓住概念间的本质区别举一反三:【变式】下列说法正确的个数有( )若1+2+390°,则1,2,3互余互补的两个角一定是一个锐角和一个钝角因为钝角没有余角,所以,只有当角为锐角时,“一个角的补角比这个角的余角大”这个说法才正确A0个 B1个 C2个 D3个【答案】B 提示:正确3. (安徽芜湖)如图所示的4×4正方形网格中,1+2+3+4+5+6+7等于( ) A330° B315° C310° D320°【答案】B 【解析】通过网格的特征首先确定445°由图形可知:l与7互余,2与6互余,3与5互余,所以l+2+3+4+5+6+790°+90°+90°+45°315° 【总结升华】互余的两个角只与数量有关,而与位置无关 举一反三:【变式】如图所示,AB和CD都是直线,AOE90°,3FOD,127°20,求2,3【答案】 解:因为AOE90°, 所以290°-190°-27°2062°40 又AOD180°-1152°40,3FOD所以3AOD76°20答:2为62°40,3为76°204. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合【答案与解析】 解:设时针转过的度数为x°时,与分针第一次重合,依题意有: 12x90+x 解得 答:时针转过°时,与分针第一次重合【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决举一反三:【变式】125°÷4 ° ° 【答案】31.25,31、15类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法5. 如图所示,B、C是线段AD上的两点,且,AC35cm,BD44cm,求线段AD的长【答案与解析】解:设ABx cm,则或于是列方程,得解得:x18,即AB18(cm)所以BC35-x35-1817(cm)(cm)所以ADAB+BC+CD18+17+2762(cm)【总结升华】根据题中的线段关系,巧设未知数,列方程求解2.分类的思想方法 6. 同一直线上有A、B、C、D四点,已知ADDB,ACCB,且CD4cm,求AB的长【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小【答案与解析】解:利用条件中的ADDB,ACCB,设DB9x,CB5y,则AD5x,AC9y,分类讨论:(1)当点D,C均在线段AB上时,如图所示: ABAD+DB14x,ABAC+CB14y, xy CDACAD9y5x4x4, x1, AB14x14(cm)(2)当点D,C均不在线段AB上时,如图所示:方法同上,解得(cm)(3)如图所示,当点D在线段AB上而点C不在线段AB上时,方法同上,解得(cm)(4)如图所示,当点C在线段AB上而点D不在线段AB上时,方法同上,解得(cm)综上可得:AB的长为14cm,cm, cm【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解专心-专注-专业