一元二次方程的应用--知识讲解(基础)(共5页).doc
-
资源ID:15001191
资源大小:57.50KB
全文页数:5页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
一元二次方程的应用--知识讲解(基础)(共5页).doc
精选优质文档-倾情为你奉上一元二次方程的应用-知识讲解(基础) 【学习目标】1. 通过分析具体问题中的数量关系,建立方程模型并解决实际问题,总结运用方程解决实际问题的一般步骤;2. 通过列方程解应用题,进一步提高逻辑思维能力、分析问题和解决问题的能力.【要点梳理】要点一、列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).要点诠释: 列方程解实际问题的三个重要环节: 一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.要点二、一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、 千位,它们数位上的单位从右至左依次分别为:1、10、100、1000、,数位上的数字只能是0、1、2、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位数.如:一个三位数,个位上数为a,十位上数为b,百位上数为c,则这个三位数可表示为: 100c+10b+a. (2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x,则另两个数分别为x-2,x+2.2.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为 (a为原来数,x为平均增长率,n为增长次数,b为增长后的量.)(2)降低率问题:平均降低率公式为 (a为原来数,x为平均降低率,n为降低次数,b为降低后的量.)3.利息问题(1)概念:本金:顾客存入银行的钱叫本金.利息:银行付给顾客的酬金叫利息.本息和:本金和利息的和叫本息和.期数:存入银行的时间叫期数.利率:每个期数内的利息与本金的比叫利率.(2)公式:利息=本金×利率×期数利息税=利息×税率本金×(1+利率×期数)=本息和本金×1+利率×期数×(1-税率)=本息和(收利息税时)4.利润(销售)问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数5.形积问题此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.要点诠释:列一元二次方程解应用题是把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.这是在解决实际问题时常用到的数学思想方程思想.【典型例题】类型一、数字问题1已知两个数的和等于12,积等于32,求这两个数是多少【答案与解析】 设其中一个数为x,那么另一个数可表示为(12-x),依题意得x(12-x)32,整理得x2-12x+320 解得 x14,x28,当x4时12-x8;当x8时12-x4所以这两个数是4和8 【总结升华】 数的和、差、倍、分等关系,如果设一个数为x,那么另一个数便可以用x表示出来,然后根据题目条件建立方程求解举一反三:【变式】有一个两位数等于其数字之积的3倍,其十位数字比个位数字少2,求这个两位数.【答案】设个位数字为,则十位数字为.由题意,得: 整理,得:解方程,得: 经检验,不合题意,舍去(注意根的实际意义的检验)当时, =2答:这个两位数为24.类型二、平均变化率问题2 (2016巴中)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率【思路点拨】 设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是200(1x)2,据此列出方程求解即可【答案与解析】 解:设该种药品平均每场降价的百分率是x,由题意得:200(1x)2=98解得:x1=1.7(不合题意舍去),x2=0.3=30%答:该种药品平均每场降价的百分率是30%【总结升华】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解判断所求的解是否符合题意,舍去不合题意的解举一反三:【变式】某产品原来每件是600元,由于连续两次降价,现价为384元,如果两次降价的百分数相同,求平均每次降价率.【答案】设平均每次降价率为,则第一次降价为,降价后价格为:,第二次降价为:,降价后价格为:.根据题意列方程,得:, 不合题意,舍去(注意根的实际意义的检验)答:平均每次下降率为.类型三、利润(销售)问题3(2015乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件市场调查反映:每降价1元,每星期可多卖出20件已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?【答案与解析】 解:降价x元,则售价为(60x)元,销售量为(300+20x)件,根据题意得,(60x40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,级定价为56元,答:应将销售单价定位56元【总结升华】列一元二次方程解应用题往往求出两解,有的解不合实际意义或不合题意应舍去,必须进行检验类型四、形积问题4(2015湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案与解析】 解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(252x+1)m,由题意得x(252x+1)=80,化简,得x213x+40=0,解得:x1=5,x2,8,当x=5时,262x=1612(舍去),当x=8时,262x=1012,答:所围矩形猪舍的长为10m、宽为8m【总结升华】1结合图形分析数量关系是解决面积等几何问题的关键;2注意检验一元二次方程的两个解是否符合题意专心-专注-专业