材料力学-习题集--全--【有答案】(共52页).doc
-
资源ID:15013232
资源大小:8.11MB
全文页数:52页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
材料力学-习题集--全--【有答案】(共52页).doc
精选优质文档-倾情为你奉上材料力学习题集第1章 引 论 11 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M。关于固定端处横截面AA上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。习题2-1图正确答案是 C 。习题2-2图 12 图示带缺口的直杆在两端承受拉力FP作用。关于AA截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。 正确答案是 D 。习题2-3图 13 图示直杆ACB在两端A、B处固定。关于其两端的约束力有四种答案。试分析哪一种答案最合理。 正确答案是 D 。习题2-4图 14 等截面直杆在两端承受沿杆轴线的拉力FP。关于杆中点处截面AA在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。 正确答案是 D 。 15 图示等截面直杆在两端作用有力偶,数值为M,力偶作用面与杆的对称面一致。关于杆中点处截面AA在杆变形后的位置(对于左端,由;对于右端,由),有四种答案,试判断哪一种答案是正确的。习题2-5图 正确答案是 C 。习题2-6图 16 等截面直杆,其支承和受力如图所示。关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。 正确答案是 C 。第2章 杆件的内力分析 21 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox坐标取向如图所示。试分析下列平衡微分方程中哪一个是正确的。 (A);习题2-1图 (B),; (C),; (D),。 正确答案是 B 。 22 对于图示承受均布载荷q的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。习题2-2图 正确答案是 B、C、D 。习题2-3图 23 已知梁的剪力图以及a、e截面上的弯矩Ma和Me,如图所示。为确定b、d二截面上的弯矩Mb、Md,现有下列四种答案,试分析哪一种是正确的。 (A),; (B),; (C),; (D),。 上述各式中为截面a、b之间剪力图的面积,以此类推。习题2-4图 正确答案是 B 。 24 应用平衡微分方程,试画出图示各梁的剪力图和弯矩图,并确定 。 解:(a),() ,() (a-1) (b-1) (b),() ,(),()(a-2) (b-2) (c),() , (c) (d) , (c-1) (d-1) (d) () ,() ,(c-2) (d-2) , (e),FRC = 0 (e) (f) , , , (e-1) (f-1) (f),() ,()(f-2)(e-2) , , (a) (b) 25 试作图示刚架的弯矩图,并确定。 解: 图(a):, () ,()(c) (d) ,() 弯距图如图(a-1),其中,位于刚节点C截面。 图(b):,() ,()(a-1)(b-1) ,() 弯距图如图(b-1),其中。 图(c):,() ()(c-1)(d-1) ,() 弯距图如图(c-1),其中。 图(d):, ,()弯距图如图(d-1),其中。习题2-6和2-7图 26 梁的上表面承受均匀分布的切向力作用,其集度为。梁的尺寸如图所示。若已知、h、l,试导出轴力FNx、弯矩M与均匀分布切向力之间的平衡微分方程。 解: 1以自由端为x坐标原点,受力图(a) , (a) , 方法2,(b) , 27 试作26题中梁的轴力图和弯矩图,并确定和。 解:(固定端) (固定端) 28 静定梁承受平面载荷,但无集中力偶作用,其剪力图如图所示。若已知A端弯矩,试确定梁上的载荷及梁的弯矩图,并指出梁在何处有约束,且为何种约束。习题2-8图 解:由FQ图线性分布且斜率相同知,梁上有向下均布q载荷,由A、B处FQ向上突变知,A、B处有向上集中力;又因A、B处弯矩无突变,说明A、B处为简支约束,由A、B处FQ值知 FRA = 20 kN(),FRB = 40 kN 由 , q = 15 kN/m(c) 由FQ图D、B处值知,M在D、B处取极值 kN·m kN·m(d)梁上载荷及梁的弯矩图分别如图(d)、(c)所示。 29 已知静定梁的剪力图和弯矩图,如图所示,试确定梁上的载荷及梁的支承。习题2-9图 解:由FQ图知,全梁有向下均布q载荷,由FQ图中A、B、C处突变,知A、B、C处有向上集中力,且 FRA = 0.3 kN() FRC = 1 kN() FRB = 0.3 kN() kN/m()由MA = MB = 0,可知A、B简支,由此得梁上载荷及梁的支承如图(a)或(b)所示。(a)(b) 210 静定梁承受平面载荷,但无集中力偶作用,其剪力图如图所示。若已知截面E上的弯矩为零,试:习题2-10图 1在Ox坐标中写出弯矩的表达式; 2画出梁的弯矩图; 3确定梁上的载荷; 4分析梁的支承状况。 解:由FQ图知,全梁有向下均布q;B、D处有相等的向上集中力4ql;C处有向下的集中力2ql;结合M,知A、E为自由端,由FQ线性分布知,M为二次抛物线,B、C、D处FQ变号,M在B、C、D处取极值。 ,FQB = 4ql (a) 1弯矩表达式: , , (b) 即 习题2-11图 2弯矩图如图(a); 3载荷图如图(b); 4梁的支承为B、D处简支(图b)。 (a) 211 图示传动轴传递功率P = 7.5kW,轴的转速n = 200r/min。齿轮A上的啮合力FR与水平切线夹角20°,皮带轮B上作用皮带拉力FS1和FS2,二者均沿着水平方向,且FS1 = 2FS2。试:(分轮B重FQ = 0和FQ = 1800N两种情况) 1画出轴的受力简图; 2画出轴的全部内力图。 解:1轴之扭矩:F N·m N·m(b) N N N(c) 轴的受力简图如图(a)。 2 FQ = 0时, N N FQ = 1800 N时,(d) N N C1335(e) N ,N N·m N·m(f) N·m FQ = 0时,FQ = 1800 N时,N·mD(g)CD(h)习题2-12图 212 传动轴结构如图所示,其一的A为斜齿轮,三方向的啮合力分别为Fa = 650N,F = 650N,Fr = 1730N,方向如图所示。若已知D = 50mm,l = 100mm。试画出: 1轴的受力简图; 2轴的全部内力图。 解:1力系向轴线简化,得受力图(a)。(a) N·m N·m ,N ,N ,Nz , ,N(b) 2全部内力图见图(a)、(b)、(c)、(d)、(e)、(f)、(g)所示。(d)(c)(g)(e)(f)第3章 弹性杆件横截面上的正应力分析(a)习题3-1图 31 桁架结构受力如图示,其上所有杆的横截面均为20mm×50mm的矩形。试求杆CE和杆DE横截面上的正应力。 解:图(a)中,(1) 截面法受力图(a) ,(2) FCE = 15 kN ,(3) (1)代入(3),得FDE = 50 kN MPa MPa(a)习题3-2图 32 图示直杆在上半部两侧面受有平行于杆轴线的均匀分布载荷,其集度= 10kN/m,在自由端D处作用有集中呼FP = 20 kN。已知杆的横截面面积A = 2.0×10-4m2,l = 4m。试求: 1A、B、E截面上的正应力; 2杆内横截面上的最大正应力,并指明其作用位置。 解:由已知,用截面法求得 FNA = 40 kN FNB = 20 kN FNE = 30 kN (1)MPa MPa MPa (2)MPa(A截面) 33 图示铜芯与铝壳组成的复合材料杆,轴向拉伸载荷FP通过两端的刚性板加在杆上。试: 1写出杆横截面上的正应力与FP、d、D、Ec、Ea的关系式;习题3-3图 2若已知d = 25mm,D = 60mm;铜和铝的单性模量分别为Ec = 105GPa和Ea = 70GPa,FP = 171 kN。试求铜芯与铝壳横截面上的正应力。 解:1变形谐调: (1) (2) 2 MPa MPa 34 图示由铝板钢板组成的复合材料柱,纵向截荷FP通过刚性平板沿着柱的中心线施加在其上。试: 1导出复合材料柱横截面上正应力与FP、b0、b1、h和Ea、Es之间的关系式;习题3-4图 2已知FP = 385kN;Ea = 70GPa,Es = 200GPa;b0 = 30mm,b1 = 20mm,h = 50mm。求铝板与钢板横截面上的最大正应力。 解:变形谐调: (1) (2) 1 2 MPa(压) MPa(压) 35 从圆木中锯成的矩形截面梁,受力及尺寸如图所示。试求下列两种情形下h与b的比值: 1横截面上的最大正应力尽可能小; 2曲率半径尽可能大。习题3-6图习题3-5图 解:1 (正应力尽可能小) 2 ,得 (曲率半径尽可能大) 36 梁的截面形状为正方形去掉上、下角,如图所示。梁在两端力偶Mz作用下发生弯曲。设正方形截面时,梁内最大正应力为;去掉上、下角后,最大正应力变为,试求: 1k值与h值之间的关系; 2为尽可能小的h值,以及这种情形下的k值。 解:, (1) ,h = 0(舍去), 代入(1): 37 工字形截面钢梁,已知梁横截面上只承受Mz = 20 kN·m一个内力分量,Iz = 11.3×106mm4,其他尺寸如图所示。试求横截面中性轴以上部分分布力系沿x方向的合力。习题3-7图 解: kN 即上半部分布力系合力大小为143 kN(压力),作用位置离中心轴y = 70mm处,即位于腹板与翼缘交界处。习题3-8图 38 图示矩形截面(b·h)直梁,在弯矩Mz作用的Oxy平面内发生平面弯曲,且不超出弹性范围,假定在梁的纵截面上有y方向正应力存在,且沿梁长均匀分布。试: 1导出的表达式; 2证明:,为中性面的曲率半径。 解:1先求表达式: (a) 即 ,() 即 (a)- 2由(a)式,令,得y = 0,则 (b) 39 图示钢管和铝管牢固地粘成复合材料管,在两端力偶Mz作用下发生平面弯曲,试: 1导出管横截面上正应力与Mz、D1、D2、D3和钢的Es、铝的Ea之间的关系式; 2已知D1 = 20mm,D2 = 36mm,D3 = 44mm;Mz = 800N·m;Es = 210GPa,Ea = 70GPa。求钢管和铝和铝管横截面上的最大正应力。习题3-9图 解:静力平衡: (1) 变形谐调:得 (2) ,(3) 由(2)(4) 代入(1),得 (5) (6) 1 ,() ,() 2 MPa MPa 310 由塑料制成的直梁,在横截面上只有Mz作用,如图所示。已知塑料受拉和受压时的弹性模量分别为Et和Ec,且已知Ec = 2Et;Mz = 600N·m。试求: 1梁内最大拉、压正应力;习题3-10图 2中性轴的位置。 解:根据平面假设,应变沿截面高度作直线变化 Ec = 2Et, 沿截面高度直线的斜率不同 中性轴不过截面形心。 1确定中性轴位置。设拉压区高度分别为ht、hc 由,得:(a)ht 即 (1) 又(2) 由(1)、(2),得 即 (中性轴的位置) 2 其中 MPa(压)习题3-11图 MPa(拉) 311 试求图a、b中所示的二杆横截面上最大正应力的比值。 解:(a)为拉弯组合 (b)为单向拉伸 习题3-12图 312 桥墩受力如图所示,试确定下列载荷作用下图示截面ABC上A、B两点的正应力: 1在点1、2、3处均有40 kN的压缩载荷; 2仅在1、2两点处各承受40 kN的压缩载荷; 3仅在点1或点3处承受40 kN的压缩载荷。解:Mpa MPa 1 MPa 2 MPa 3在点1加载: MPa MPa 由对称性,得 在3点加载:MPa,MPa 313 图示侧面开有空洞的正方形截面管,管壁厚= 5mm,管在两端承受轴向载荷FP。已知开孔处截面的形心为C,形心主惯性矩m4,Fp = 25kN。试求: 1开孔处横截面上点F处的正应力;习题3-13图 2最大正应力。 解:kN N·m m2 1 MPa2 MPa(在y正向最大位置)习题3-14图 314 图示矩形截面杆在自由端承受位于纵向对称面内的纵向载荷FP,已知FP = 60kN。试求: 1横截面上点A的正应力取最小值时的截面高度h; 2在上述h值下点A的正应力值。 解: (1) 1令, h = 3d = 75mm(2) 2由(1)、(2)式得: MPa习题3-15图 315 图中所示为承受纵向载荷的人骨受力简图,假定实心骨骼为圆截面。试: 1确定截面BB上的应力分布; 2假定骨骼中心部分(其直径为骨骼外径的一半)由海绵状骨质所组成,且忽略海绵状承受应力的能力,确定截面BB上的应力分布;(b) 3确定1、2两种情况下,骨骼在截面BB上最大压应力之比。(a)(c)OB(d)O 解:1MPa MPa MPa MPa 沿y方向应力分布如图(c)所示,中性轴为zc。2 MPa MPa Mpan MPa zC为中性轴,沿y轴应力分布如图(d) 3 ,或(a)习题3-16图 316 正方形截面杆一端固定,另一端自由,中间部分开有切槽。杆自由端受有平行于杆轴线的纵向力FP。若已知FP =1kN,杆各部分尺寸示于图中。试求杆内横截面上的最大正应力,并指出其作用位置。 解:m2 m3 m3 FNx = 1 kN N·m N·m MPa 最大正应力作用位置位于中间开有切槽的横截面的左上角点A,如图(a)所示。习题3-17图 317 钢制立柱上承受纵向载荷FP如图所示。现在A、B、D三处测得x方向的正应变,。若已知钢的弹性模量E = 200GPa。试求: 1力FP的大小; 2加力点在Oyz坐标中的坐标值。 解:m2 m3 m3 (1) (2) (3) (4) 由(1)、(4), 即 (5) 由(2)、(4),(6)习题3-18图 由(3)、(4),(7) 解(5)、(6)、(7):mm mm FP = 240 kN 318 矩形截面柱受力如图所示,试证明: 1当铅垂力FP作用在下面方程所描述的直线上的任意点时,点A的正应力等于零:(a) 2为了使横截面的所有点上都不产生拉应力,其作用点必须位于由类似上述方程所描述的直线围成的区域内(图中虚直线围成的区域)。 解:1写出K点压弯组合变形下的正应力(图a)。 (b) (1) 将代入(1)式,并使正应力为零,得FP所作用的直线方程 整理得: 2若FP作用点确定,令(1)式等于零,得截面的中性轴方程(图b):(c) (2) 中性轴nn的截距:(3) 说明中性轴nn,与力FP作用点位于形心C的异侧,说明nn划分为FP作用下的区域为压应力区,另一区域是拉应力区(见图b)。 如果将(2)改写为(4) 并且把中心轴上一点(y, z)固定,即中性轴可绕该点顺时针转动(从11转到22) 由(4)式,FP作用必沿直线移动。由(3)式,22直线的截距值大于11直线的。所以,当中性轴11顺时针转向中性轴22时,FP作用点FP1、FP2沿直线,并绕形心也顺时针转向。(d) 如果中性轴绕A点从11顺时针转动至33(中性轴始终在截面外周旋转),则截面内就不产生拉应力,将A坐标代入(4)式:,即FP沿该直线移动。从FP1FP2FP3,反之铅垂力FP从FP1FP2FP3直线移动,截面不产生拉应力,同理过B、F、D分别找另三条FP移动的直线。这四条直线所围区域为截面核心。铅垂压力在截面核心内作用,则横截面上不会有拉应力。 319 矩形截面悬臂梁受力如图所示,其中力FP的作用线通过截面形心。试: 1已知FP、b、h、l和,求图中虚线所示截面上点a的正应力; 2求使点a处正应力为零时的角度值。习题3-19图 解:, , 令,则, 320 矩形截面柱受力如图所示。试:习题3-20图 1已知= 5°,求图示横截面上a、b、c三点的正应力。 2求使横截面上点b正应力为零时的角度值。 解: , 1 MPa MPa MPa习题3-21图 2 ,= 4.76° 321 交通信号灯柱上受力如图所示。灯柱为管形截面,其外径D = 200mm,内径d = 180mm。若已知截面A以上灯柱的重为4kN。试求横截面上点H和K处的正应力。 解:,=22.62° N N·m MPa习题3-22图 MPa 322 No. 25a普通热轧工字钢制成的立柱受力如图所示。试求图示横截面上a、b、c、d四点处的正应力。解:m2 m3 m3 kN N·m N·m(a) MPa MPa MPa MPa MPa习题3-23图 Mpa 323 承受集度为q = 2.0kN/m均布载荷的木制简支梁,其截面为直径d = 160mm的半圆形。梁斜置如图所示。试求梁内的最大拉应力与最大压应力。(a) 解:, N·m(b) m4 m4 (c) yC MPa(左下角A点) 最大压应力点应在CD弧间,设为 (1) ,得: 代回(1)式, MPa习题3-24图 324 简支梁的横截面尺寸及梁的受力均如图所示。试求N截面上a、b、c三点的正应力及最大拉应力。 解:kN·m MPa(压应力) MPa(拉应力) MPa(拉应力) MPa(拉应力) 325 根据杆件横截面正应力分析过程,中性轴在什么情形下才会通过截面形心?试分析下列答案中哪一个是正确的。 (A)My = 0或Mz = 0,; (B)My = Mz = 0,; (C)My = 0,Mz = 0,; (D)或,。 正确答案是 D 。 解:正如教科书P168第2行所说,只要,则其中性轴一定不通过截面形心,所以本题答案选(D)。 326 关于中性轴位置,有以下几种论述,试判断哪一种是正确的。 (A)中性轴不一定在截面内,但如果在截面内它一定通过形心; (B)中性轴只能在截面内并且必须通过截面形心; (C)中性轴只能在截面内,但不一定通过截面形心; (D)中性轴不一定在截面内,而且也不一定通过截面形心。 正确答案是 D 。 解:本题解答理由可参见原书P167倒数第1行,直至P168页第2行止,所以选(D)。 327 关于斜弯曲的主要特征有四种答案,试判断哪一种是正确的。 (A),中性轴与截面形心主轴不一致,且不通过截面形心; (B),中性轴与截面形心主轴不一致,但通过截面形心; (C),中性轴与截面形心主轴平行,但不通过截面形心; (D)或,中性轴与截面形心主轴平行,但不通过截面形心。 正确答案是 B 。 解:本题解答理由参见原书P167第2-3行。 328 承受相同弯矩Mz的三根直梁,其截面组成方式如图a、b、c所示。图a中的截面为一整体;图b中的截面由两矩形截面并列而成(未粘接);图c中的截面由两矩形截面上下叠合而成(未粘接)。三根梁中的最大正应力分别为、。关于三者之间的关系有四种答案,试判断哪一种是正确的。 (A); (B);习题3-28图 (C); (D)。 正确答案是 B 。 解: 选(B)。第4章 弹性杆件横截面上的切应力分析 41 扭转切应力公式的应用范围有以下几种,试判断哪一种是正确的。 (A)等截面圆轴,弹性范围内加载; (B)等截面圆轴; (C)等截面圆轴与椭圆轴; (D)等截面圆轴与椭圆轴,弹性范围内加载。 正确答案是 A 。 解:在推导时利用了等截面圆轴受扭后,其横截面保持平面的假设,同时推导过程中还应用了剪切胡克定律,要求在线弹性范围加载。 42 两根长度相等、直径不等的圆轴受扭后,轴表面上母线转过相同的角度。设直径大的轴和直径小的轴的横截面上的最大切应力分别为和,切变模量分别为G1和G2。试判断下列结论的正确性。 (A); (B); (C)若G1G2,则有; (D)若G1G2,则有。习题8-4图 正确答案是 C 。 解:因两圆轴等长,轴表面上母线转过相同角度,指切应变相同,即由剪切胡克定律知时,。 43 承受相同扭矩且长度相等的直径为d1的实心圆轴与内、外径分别为d2、的空心圆轴,二者横截面上的最大切应力相等。关于二者重之比(W1/W2)有如下结论,试判断哪一种是正确的。 (A); (B); (C); (D)。 正确答案是 D 。 解:由得 即 (1) (2)(1)代入(2),得 44 由两种不同材料组成的圆轴,里层和外层材料的切变模量分别为G1和G2,且G1 = 2G2。圆轴尺寸如图所示。圆轴受扭时,里、外层之间无相对滑动。关于横截面上的切应力分布,有图中所示的四种结论,试判断哪一种是正确的。 正确答案是 C 。习题4-5图解:因内、外层间无相对滑动,所以交界面上切应变相等,因,由剪切胡克定律得交界面上:。 45 等截面圆轴材料的切应力切应变关系如图中所示。圆轴受扭后,已知横截面上点的切应变,若扭转时截面依然保持平面,则根据图示的关系,可以推知横截面上的切应力分布。试判断图中所示的四种切应力分布哪一种是正确的。 正确答案是 A 。 46图示实心圆轴承受外扭转力偶,其力偶矩T = 3kN·m。试求: 1轴横截面上的最大切应力; 2轴横截面上半径r = 15mm以内部分承受的扭矩所占全部横截面上扭矩的百分比; 3去掉r = 15mm以内部分,横截面上的最大切应力增加的百分比。习题4-6图 解:1MPa 2 3 习题4-7图 47 图示芯轴AB与轴套CD的轴线重合,二者在B、C处连成一体;在D处无接触。已知芯轴直径d = 66mm;轴套的外径D = 80mm,壁厚= 6mm。若二者材料相同,所能承受的最大切应力不得超过60MPa。试求结构所能承受的最大外扭转力偶矩T。 解: N·m N·m N·mN·m 48 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。设实心轴半径为R0,空心圆轴的内、外半径分别为R1和R2,且R1/R2 = n,二者所承受的外扭转力偶矩分别为Ts和Th。若二者横截面上的最大切应力相等,试证明: 解:由已知长度和质量相等得面积相等: (1) (2) (3) 由(2)、(3)式 (4) 由(1) 代入(4) 习题4-9图 49 图示开口和闭口薄壁圆管横截面的平均直径均为D、壁厚均为,横截面上的扭矩均为T = Mx。试: 1证明闭口圆管受扭时横截面上最大切应力 2证明开口圆管受扭时横截面上最大切应力 3画出两种情形下,切应力沿壁厚方向的分布。 解:1(b)(a) 即: 2由课本(818)式 习题4-10图 410 矩形和正方形截面杆下端固定,上端承受外扭转力偶作用,如图所示。若已知T = 400N·m,试分别确定二杆横截面上的最大切应力。 解:MPa MPa 411 图示三杆受相同的外扭转力偶作用。已知T = 30N·m,且最大切应力均不能超过60MPa。试确定杆的横截面尺