欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021_2022学年新教材高中数学第二章平面解析几何2.6.1双曲线的标准方程课件新人教B版选择性必修第一册.pptx

    • 资源ID:15022213       资源大小:1.81MB        全文页数:51页
    • 资源格式: PPTX        下载积分:12金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021_2022学年新教材高中数学第二章平面解析几何2.6.1双曲线的标准方程课件新人教B版选择性必修第一册.pptx

    2.6.12.6.1双曲线的标准方程双曲线的标准方程第二章第二章2021内容索引课前篇课前篇 自主预习自主预习课堂篇课堂篇 探究学习探究学习核心素养思维脉络1.结合实际情景熟悉双曲线的定义、几何图形和标准方程的推导过程.(逻辑推理、数学抽象)2.掌握双曲线的标准方程及其求法.(数学运算)3.会利用双曲线的定义和标准方程解决简单的实际问题.(数学运算)4.与椭圆的标准方程进行比较,并加以区分.(逻辑推理)课前篇课前篇 自主预习自主预习激趣诱思如图所示,取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线,这就是双曲线的一支.把两个固定点的位置交换,如图所示,类似可以画出双曲线的另一支.这两条曲线合起来叫做双曲线.双曲线上的点到两定点F1,F2的距离有何特点?知识点拨1.双曲线的定义 名师点析若将定义中差的绝对值中的绝对值符号去掉,则点P的轨迹为双曲线的一支,具体是哪一支,取决于|PF1|与|PF2|的大小.(1)若|PF1|PF2|,则|PF1|-|PF2|0,点P的轨迹是靠近定点F2的那一支;(2)若|PF1|0,点P的轨迹是靠近定点F1的那一支.微思考在双曲线的定义中,若去掉条件02a|F1F2|)|MF1|-|MF2|=2a(02a|F1F2|)a,b,c的关系b2=a2-c2b2=c2-a2标准方程焦点在x轴上焦点在y轴上微练习 答案 D 微思考在双曲线的标准方程中,怎样判断焦点在哪条坐标轴上?提示 如果含x2项的系数是正的,那么焦点在x轴上;如果含y2项的系数是正的,那么焦点在y轴上.课堂篇课堂篇 探究学习探究学习探究一探究一求双曲线的标准方程求双曲线的标准方程例1求适合下列条件的双曲线的标准方程. (2)可设双曲线方程为mx2+ny2=1(mn0),代入点的坐标,得到方程组,解方程组即可得到.反思感悟求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法求出a,b的值.若焦点位置不确定,可按焦点在x轴和y轴上两种情况讨论求解,此方法思路清晰,但过程复杂.若双曲线过两定点,可设其方程为mx2+ny2=1(mn0),通过解方程组即可确定m,n,避免了讨论,简化求解过程.变式训练1根据下列条件,求双曲线的标准方程. (2)设双曲线的方程为Ax2+By2=1,AB0.因为点P,Q在双曲线上,探究二探究二双曲线定义的应用双曲线定义的应用例2已知双曲线 -y2=1的左、右焦点分别为F1,F2,P为双曲线右支上一点,点Q的坐标为(-2,3),则|PQ|+|PF1|的最小值为.分析由双曲线方程求出a及c的值,利用双曲线定义把|PQ|+|PF1|转化为|PQ|+|PF2|+2a,连接QF2交双曲线右支于P,则此时|PQ|+|PF2|最小等于|QF2|,由两点间的距离公式求出|QF2|,则|PQ|+|PF1|的最小值可求.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)如图,若P是双曲线左支上的点,且|PF1|PF2|=32,试求F1PF2的面积.(1)由双曲线的定义得|MF1|-|MF2|=2a=6,又双曲线上一点M到它的一个焦点的距离等于16,假设点M到另一个焦点的距离等于x,则|16-x|=6,解得x=10或x=22.故点M到另一个焦点的距离为10或22.(2)将|PF2|-|PF1|=2a=6两边平方得|PF1|2+|PF2|2-2|PF1|PF2|=36,则|PF1|2+|PF2|2=36+2|PF1|PF2|=36+232=100.在F1PF2中,由余弦定理得反思感悟1.求双曲线中距离的范围和焦点三角形面积的策略(1)数形结合利用双曲线的定义,弄清|PF1|,|PF2|,|F1F2|三者之间满足的关系式,一般常用到三角变换和解三角形的知识,如例3(2)中进行面积的讨论中,就用到了余弦定理、面积公式等知识.(2)化归思想将原问题等价转化为易解决的问题,在双曲线中,尤其要注意特殊图形的性质和双曲线的定义,如例2中将|PQ|+|PF1|进行等价转化是问题的核心.2.求解与双曲线有关的点的轨迹问题,常见的方法有两种:(1)列出等量关系,化简得到方程;(2)寻找几何关系,由双曲线的定义,得出对应的方程.求解双曲线的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.延伸探究将例3(2)中的条件“|PF1|PF2|=32”改为“F1PF2=60”,求F1PF2的面积.由双曲线的定义和余弦定理得|PF2|-|PF1|=6,|F1F2|2=|PF1|2+|PF2|2-2|PF1|PF2|cos 60,所以102=(|PF1|-|PF2|)2+|PF1|PF2|,所以|PF1|PF2|=64,变式训练2(1)一动圆P过定点M(-4,0),且与已知圆N:(x-4)2+y2=16相切,则动圆圆心P的轨迹方程是()(2)已知双曲线x2-y2=1,F1,F2分别为其左、右两个焦点,P为双曲线上一点,若PF1PF2,则|PF1|+|PF2|的值为.(1)答案 C 解析 动圆圆心为P,半径为r,已知圆圆心为N,半径为4.由题意知,|PM|=r,|PN|=r+4或r-4,所以|PN|-|PM|=4,即动点P到两定点的距离之差的绝对值为常数4,P在以M,N为焦点的双曲线上,且2a=4,2c=8,解析 不妨设点P在双曲线的右支上,因为PF1PF2,所以|F1F2|2=|PF1|2+|PF2|2=(2 )2,又|PF1|-|PF2|=2,所以(|PF1|-|PF2|)2=4,可得2|PF1|PF2|=4,则(|PF1|+|PF2|)2=|PF1|2+|PF2|2+2|PF1|PF2|=12,探究三探究三双曲线在生活中的应用双曲线在生活中的应用例4某飞船返回舱顺利到达地球后,为了及时将航天员安全救出,地面指挥中心在返回舱预计到达区域安排了三个救援中心(记A,B,C),A在B的正东方向,相距6千米,C在B的北偏西30方向,相距4千米,P为航天员着陆点.某一时刻,A接收到P的求救信号,由于B,C两地比A距P远,在此4秒后,B,C两个救援中心才同时接收到这一信号.已知该信号的传播速度为1千米/秒,求在A处发现P的方位角.解 因为|PC|=|PB|,所以P在线段BC的垂直平分线上.又因为|PB|-|PA|=4|PF2|可推断出其轨迹是双曲线的一支.当a=5时,方程y2=0,可知其轨迹与x轴重合,舍去在x轴负半轴上的一段,又因为|PF1|-|PF2|=2a,说明|PF1|PF2|,所以应该是起点为(5,0),与x轴重合向x轴正方向延伸的射线.2.已知双曲线 =1(a0,b0),F1,F2为其两个焦点,若过焦点F1的直线与双曲线的同一支相交,且所得弦长|AB|=m,则ABF2的周长为()A.4a B.4a-mC.4a+2mD.4a-2m答案 C解析 不妨设|AF2|AF1|,由双曲线的定义,知|AF2|-|AF1|=2a,|BF2|-|BF1|=2a,所以|AF2|+|BF2|=(|AF1|+|BF1|)+4a=m+4a,于是ABF2的周长l=|AF2|+|BF2|+|AB|=4a+2m.故选C.3.已知方程 =1表示双曲线,则m的取值范围是()A.(-1,+) B.(2,+)C.(-,-1)(2,+)D.(-1,2)答案 D 5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(3)a=b,经过点(3,-1). 解 (1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9, 本本 课课 结结 束束

    注意事项

    本文(2021_2022学年新教材高中数学第二章平面解析几何2.6.1双曲线的标准方程课件新人教B版选择性必修第一册.pptx)为本站会员(得****n)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开