欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2019人教版-高中数学-选修2-2-1.3.2函数的极值与导数练习(共8页).doc

    • 资源ID:15023434       资源大小:64.50KB        全文页数:8页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019人教版-高中数学-选修2-2-1.3.2函数的极值与导数练习(共8页).doc

    精选优质文档-倾情为你奉上2019人教版精品教学资料·高中选修数学 高中数学 1.3.2函数的极值与导数练习 新人教A版选修2-2一、选择题1(2015·吉林实验中学高二期中)已知函数yf(x)在定义域内可导,则函数yf(x)在某点处的导数值为0是函数yf(x)在这点处取得极值的()A充分不必要条件B必要不充分条件C充要条件D非充分非必要条件答案B解析根据导数的性质可知,若函数yf(x)在这点处取得极值,则f(x)0,即必要性成立;反之不一定成立,如函数f(x)x3在R上是增函数,f(x)3x2,则f(0)0,但在x0处函数不是极值,即充分性不成立故函数yf(x)在某点处的导数值为0是函数yf(x)在这点处取得极值的必要不充分条件,故选B.2函数yx4x3的极值点的个数为()A0B1C2D3答案B解析yx3x2x2(x1),由y0得x10,x21.当x变化时,y、y的变化情况如下表x(,0)0(0,1)1(1,)y00y无极值极小值故选B.3已知实数a、b、c、d成等比数列,且曲线y3xx3的极大值点坐标为(b,c),则ad等于()A2B1C1 D2答案A解析a、b、c、d成等比数列,adbc,又(b,c)为函数y3xx3的极大值点,c3bb3,且033b2,或ad2.4已知f(x)x3ax2(a6)x1有极大值和极小值,则a的取值范围是()A1<a<2B3<a<6Ca<3或a>6Da<1或a>2答案C解析f (x)3x22axa6,f(x)有极大值与极小值,f (x)0有两不等实根,4a212(a6)>0,a<3或a>6.5已知函数f(x)x3px2qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为()A.,0B0,C,0D0,答案A解析f (x)3x22pxq,由f (1)0,f(1)0得,解得f(x)x32x2x.由f (x)3x24x10得x或x1,易得当x时f(x)取极大值.当x1时f(x)取极小值0.6函数f(x)(a<b<1),则()Af(a)f(b)Bf(a)<f(b)Cf(a)>f(b)Df(a),f(b)的大小关系不能确定答案C解析f (x)().当x<1时,f (x)<0,f(x)为减函数,a<b<1,f(a)>f(b)二、填空题7(20142015·福建安溪一中、养正中学联考)曲线yx(3lnx1)在点(1,1)处的切线方程为_答案4xy30解析y|x1(3lnx4)|x14,切线方程为y14(x1),即4xy30.8(20142015·河北冀州中学期中)若函数f(x)xasinx在R上递增,则实数a的取值范围为_答案1,1解析f (x)1acosx,由条件知f (x)0在R上恒成立,1acosx0,a0时显然成立;a>0时,cosx恒成立,1,a1,0<a1;a<0时,cosx恒成立,1,a1,即1a<0,综上知1a1.9设x1与x2是函数f(x)alnxbx2x的两个极值点,则常数a_.答案解析f (x)2bx1,由题意得a.三、解答题10已知f(x)ax3bx2cx(a0)在x±1时取得极值,且f(1)1.(1)试求常数a、b、c的值;(2)试判断x±1时函数取得极小值还是极大值,并说明理由解析(1)由f (1)f (1)0,得3a2bc0,3a2bc0.又f(1)1,abc1.a,b0,c.(2)f(x)x3x,f (x)x2(x1)(x1)当x<1或x>1时,f (x)>0;当1<x<1时,f (x)<0,函数f(x)在(,1)和(1,)上是增函数,在(1,1)上为减函数当x1时,函数取得极大值f(1)1;当x1时,函数取得极小值f(1)1.点评若函数f(x)在x0处取得极值,则一定有f (x0)0,因此我们可根据极值得到两个方程,再由f(1)1得到一个方程,解上述方程组成的方程组可求出参数一、选择题11(20142015·山东省德州市期中)已知函数f(x)ex(sinxcosx),x(0,2013),则函数f(x)的极大值之和为()A.BC.D答案B解析f (x)2exsinx,令f (x)0得sinx0,xk,kZ,当2k<x<2k时,f (x)>0,f(x)单调递增,当(2k1)<x<2k时,f (x)<0,f(x)单调递减,当x(2k1)时,f(x)取到极大值,x(0,2013),0<(2k1)<2013,0k<1006,kZ.f(x)的极大值之和为Sf()f(3)f(5)f(2011)ee3e5e2011,故选B.12(2015·海南文昌中学高二期中)对于三次函数f(x)ax3bx2cxd(a0),给出定义:设f(x)是函数yf(x)的导数,f(x)是f(x)的导数,若方程f(x)0有实数解x0,则称点(x0,f(x0)为函数yf(x)的“拐点”某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心设函数g(x)x3x23x,则g()g()g()()A2013B2014C2015D2016答案B分析由题意对已知函数求两次导数可得图象关于点(,1)对称,即f(x)f(1x)2,即可得到结论解析函数的导数g(x)x2x3,g(x)2x1,由g(x0)0得2x010,解得x0,而g()1,故函数g(x)关于点(,1)对称,g(x)g(1x)2,故设g()g()g()m,则g()g()g()m,两式相加得2×20142m,则m2014.故选B.点评本题主要考查导数的基本运算,利用条件求出函数的对称中心是解决本题的关键求和的过程中使用了倒序相加法二、填空题13已知函数yx3ax2bx27在x1处有极大值,在x3处有极小值,则a_,b_.答案39解析y3x22axb,方程y0有根1及3,由韦达定理应有经检验a3,b9符合题意14(2015·郑州市质量检测)已知偶函数yf(x),对于任意的x满足f(x)cosxf(x)sinx>0(其中f(x)是函数f(x)的导函数),则下列不等式中成立的有_f<f f>ff(0)<f f<f答案解析令g(x),由已知得g(x)>0,g(x)在上单调递增,故得g>g,g(0)<g,即f>f,f(0)<f,f>f,f>f,错误,正确;正确;又g<g,即<,f<f,正确三、解答题15已知函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值解析(1)f (x)ex(axab)2x4.由已知得f(0)4,f (0)4,故b4,ab8.从而a4,b4.(2)由(1)知,f(x)4ex(x1)x24x,f (x)4ex(x2)2x44(x2)(ex)令f (x)0得,xln2或x2.从而当x(,2)(ln2,)时,f (x)>0;当x(2,ln2)时,f (x)<0.故f(x)在(,2),(ln2,)上单调递增,在(2,ln2)上单调递减当x2时,函数f(x)取得极大值,极大值为f(2)4(1e2)16(2015·北京文,19)设函数f(x)kln x,k0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,上仅有一个零点分析本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数的零点等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力第一问,先对f(x)求导,令f(x)0解出x,将函数的定义域分段,列表,分析函数的单调性,求极值;第二问,利用第一问的表求函数的最小值,如果函数有零点,只需最小值0,从而解出k的取值范围,后面再分情况分析函数有几个零点解析(1)由f(x)kln x,(k0)得,f(x)x.由f(x)0解得x(负值舍去)f(x)与f(x)在区间(0,)上的情况如下:x(0,)(,)f(x)0f(x)所以,f(x)的单调递减区间是(0,),单调递增区间是(,);f(x)在x处取得极小值f().(2)由(1)知,f(x)在区间(0,)上的最小值为f().因为f(x)存在零点,所以0,从而ke.当ke时,f(x)在区间(1,)上单调递减,且f()0,所以x是f(x)在区间(1,上的唯一零点当ke时,f(x)在区间(0,)上单调递减,且f(1)0,f()0,所以f(x)在区间(1,上仅有一个零点综上可知,若f(x)存在零点,则f(x)在区间( 1,上仅有一个零点. 17(20142015·山东省菏泽市期中)已知函数f(x)x2alnx.(1)若a1,求函数f(x)的极值,并指出是极大值还是极小值;(2)若a1,求证:在区间1,)上,函数f(x)的图象在函数g(x)x3的图象的下方解析(1)由于函数f(x)的定义域为(0,),当a1时,f (x)x,令f (x)0得x1或x1(舍去),当x(0,1)时,f (x)<0,因此函数f(x)在(0,1)上单调递减,当x(1,)时,f (x)>0,因此函数f(x)在(1,)上单调递增,则x1是f(x)的极小值点,所以f(x)在x1处取得极小值为f(1).(2)证明:设F(x)f(x)g(x)x2lnxx3,则F(x)x2x2,当x>1时,F(x)<0,故f(x)在区间1,)上单调递减,又F(1)<0,在区间1,)上,F(x)<0恒成立,即f(x)<g(x)恒成立因此,当a1时,在区间1,)上,函数f(x)的图象在函数g(x)图象的下方专心-专注-专业

    注意事项

    本文(2019人教版-高中数学-选修2-2-1.3.2函数的极值与导数练习(共8页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开